AO-A180 527 A GRAPH SEPM”TOR THEOREII M 11S MLICHTION TO
WS IAN ELIMINATION TO.. C(U) CARNEGIE-MELL! OI UNIV
TTSBURGH PA DEPT OF COHPUTER SCIENCE. . SHEFFLER
UNCLASSIFIED DEC 87 CMU-CS-87-123 AFKWAL-TR-87-1159 F/G 20/3

.hi

LRV

-

N T-E
T
oy H

22 s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963.A

e ,
leate .:'.'.!:‘w WL e O N e

' < WOl IOTRIOLM S WA RN
"*'$~b!'b§’v'ﬂ'b'-’l) i Mttt

y LU
oag RN ALY ||.|l
P R T TR 2 A OO M L X "’l M
Voot el et gt Vel At el

d o e

N g - -
(‘ _._‘.-.., -

S5} et

o)
o’

PHOTOGRAPH THIS SHEET

AR/ -TR-87-//59

JUSTIFICATION

N~
N1
(T o I I~ LEVEL
=
00 |z
0 (3
- 7
[7]
23]
< |8
<«
! &
Q g
< |
ACCESSION FOR .
NTIS GRA&I
DTIC TAB
UNANNOUNCED O

BY

DISTRIBUTION /

AVAILABILITY CODES

DIST AVAIL AND/OR SPECIAL

A-/

DiSTRIBUT!ON STAMP

DOCUMENT IDENTIFICATION

Jeec 19¢7

INVENTORY

-3 L2

om0l ae

DISTRIBUTION STATEMENT

""\""“EC

, [mﬁs¢LCl t-
\ Ff:.tj 08138

*E

DATE ACCESSIONED

88 2

05

DATE RETURNED

108

DATE RECEIVED IN DTIC

REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND REfURN TO DTIC-DDAC

oTIC SOEM, T0A

DOCUMENT PROCESSING SHEET

PREVIOUS EDITION MAY Bt USED UNTIL

STOCK IS EXHAUSTED,

,.o,r} .

- b 4

. ¢ ¥
AFWAL-TR-87-1159 :;

s

l'

.l

N~ §
N A GRAPH SEPARATOR THEOREM AND ITS APPLICATION TO
m GAUSSIAN ELIMINATION TO OPTIMIZE BOOLEAN EXPRESSIONS N
FOR PARALLEL EVALUATION 3

00 3
m Thomas J. Sheffler :
]

A Carnegie-Mellon University 3
‘ < Computer Science Department N
I Pittsburgh, PA 15213-3890 b
< i
December 1987 -

.

)

[#

Al

Interim
'l

'{:

ol
.6

4

0

0

\

)
i)
Approved for Public Release; Distribution is Unlimited j
v,

W

\ ‘.:
. X
. '}.l
N

AVIONICS LABORATORY)

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

ATIR FORCE SYSTEMS COMMAND "
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543 V)

~

5

]

i t
)
NOTICE ¢
|
When Government drawings, specifications, or other data are used for any :‘

purpose other than in connection with a definitely Government-related A

procurement, the United States Government incurs no responsibility or any >

obligation whatsoever., The fact that the Government may have formulated or in o

‘ any way supplied the said drawings, specifications, or other data, is not to Dy
‘ be regarded by implication, or otherwise in any manner construed, as licensing oot
' the holder, or any other person or corporation; or as conveying any rights or pl
permission to manufacture, use, or sell any patented invention that may in any "
| way be related thereto. Eﬁ

This report has been reviewed by the Office of Public Affairs (ASD/PA)
[and is releasable to the National Technical Information Service (NTIS). At .
NTIS, it will be available to the general public, including foreign nations.

N
This technical report has been reviewed and is approved for publication. n&
»

CHAHIRA M. HOPPER

»
Project Engineer Ch, Advanced Systems Research Gp ?
Information Processing Technology Br 5
N
r
FOR THE COMMANDER g
]
n}
L}

ek L j it '?

EDWARD L. GLIATTI
Ch, Information Processing Technology Br kP,
Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer emploved by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list,

Copies of this report should not be returned unless return is required by
security corsiderations, contractual obligations, or notice on a specific
document.

[vy PN AT S 4 S\ gy RSP PR DL ARAN TS TR KRR T O TN XY X A YR INy A'pa o $%9 4\ ‘o gt [P I Py

v Unclassified
. SECURITY CLASSIFICATION OF THIS PAGE
4
¥ Form Approved
N REPORT DOCUMENTATION PAGE OMB No. 07040188
b Ta. REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
.;. Unclassified
- 2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
R Approved for public release; distribution
.: 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE is unlimited.
&
P
X 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
1o V]
)
, ¥ —~TR=— -
. 62. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
:: Carnegie-Mellon University (If applicable) Air Force Wright Aeronautical Laboratories
R AFWAL/AAAT-3
:.' 6¢c. ADDRESS (City, State, and 2IP Code) 7b ADDRESS (City, State, and ZIP Code)
, Computer Science Dept Wright-Patterson AFB OH 45433-6543
& Pittsburgh PA 15213-3890
.
v, 8a. NAME OF FUNDING / SPONSORING Bb OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
% , ORGANIZATION (if applicable)
N F33615-84-K~1520
4
) 8c. ADDRESS (City, State, and ZiP Code) 10 SOURCE OF FUNDING NUMBERS
- PROGRAM PROJECT TASK WORK_UNIT
. ELEMENT NO | NO NO ACCESSION NO.
‘é. 61101E 4976 00 01
b 11. TITLE (Include Security Classification)
; A Graph Separator Theorem and Its Application to Gaussian Elimination to Optimize
tg Boolean Expressions for Parallel Evaluation
12. PERSONAL AUTHOR(S)
K Thomas J. Sheffler
Wi 13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month Day) |15 PAGE COUNT
h] Interim FROM TO 1987 December 87
v 16. SUPPLEMENTARY NOTATION
et
- 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
* FIELD GROUP SUB-GROUP
Y
3!
Wy 19. ABSTRACT (Continue on reverse if necessary and identify by block number)
s GCaussian elimination, which has been shown to be applicable to the solution of prob-
1] . N . . . ~ .
o lems in many different domains, is the technique used by COSMO S to symbolically
[/
¥
W analyze digital MOS networks for their behavior in terms of Boolean expressions.
Kot e e .
W While pivot selection algorithms are known which minimize the total number of
; operations required to solve a system, this report will focus on pivot selection uigo-
¢
; rithms that result in expressions of small depth, from which fine-grained parallelism
Y
:.o may be extracted.
I . .
' A graph theoretic approach to Gaussian elimnination is adopted which allows
'y 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
:’.: T uncLassirieounumTed [same AS RPT O omic users | Unclassified
LN '
VW 22a NAME OF RESPONSIBLE INDIVIDUAL 22b, TELEPHQNE (Inglugde Area Code) | 22¢ OFFICE SYMBO
ﬁi‘: Chahira M. Hopper (55135 3’%3.%‘85 .XP%KL}AAA‘P-s
" DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
i . Unclassified

UNCLASSIFIED

Block 19 (Continued)

SRR
PN N)

the structure of sparse systems to be clearly examined, and an elimination ordering

OA

based on graph separators is shown to result in expressions of small depth. This

-

report proposes an algorithm related to Gaussian elimination which characterizes

-
-

graphs in terms of decomposition rules and shows that for graphs which may be

o
o

reduced by an elimination ordering that results in low total complexity, a reordered

elimination sequence may result in expressions of small depth.

=

-

L,

-,

ii

L)

; [N2V - > L L L B T HCIRY, 5t I I [o " W UMY R A Y
“»‘,"1, ‘l.l’v?‘."“":"k 'P'*'QJ !..’h.) Q. YOS ol et .. A .. I AN “' AL, booeY, o ¥

o.:

L] (Y
VogPy o\
LRELATLIR L WA '.l

hadediia el A e REA dly AR AR g/otel. pE Tl bak, o oy 2R UAR 1Al 628 Vol S0 Sob fub-aad 928 i 0 0ab A RN TN NTYY T NI TN PR TR PR XN W

Acknowledgements

My sincere appreciation goes to my friends and family who have been supportive of
me in these last months and have put up with my periods of irritability when things
were not going right. A special thanks is extended to D. Sleator whose assistance
with the proof of Chapter § was most appreciated, and to R. Heuler whose carefu!
editing was an enormous help. I am indebted to my advisor, R. Bryant, who
suggested this topic and guided me in my research. Whiie being patient enough to
allow me to explore areas which would eventually lead nowhere, he was always there
to help me get back on track. I am grateful to him for his guidance and enthusiasm
throughout the course of this work.

iid

T L2 198 n'% m'm A'R 2°2 4 . ek nan agf cal va¥ ial - PO BRI, OV TY VIOV Y ETH TR KN FFAN R AP TTIWI RIT TN RA R,

5 Contents

& 1 Introduction 1
hy 11 COSMOS
n 1.2 Gaussian Elimination. it it i v, 5
1.3 Expression Representation and Pivot Selection 6
1.4 Paralle] Architectures / Simulation Engines 7

2 Gaussian Elimination 11
2.1 Introduction
2.2 A Graph Theoretic Approach
2.3 PathProblemsonGraphs 15

: 2.4 Choosing an Elimination Ordering 18

M 3 Generalized Nested Dissection 22
o 3.1 Graph Separators
0 3.2 Elimination Ordering Algorithms

i 321 NestedDissection. i ittt it vt 24
:s 3.2.2 Automatic Nested Dissection 26

N L
o) . f |'

- nrn - e
-~ i ' £ y) ()
.o. P A T A0S Voot o8, T WG W ALY 2. Ve, DR e NN WY

R Y R TN TN TN TR N I SOr O O O I Y SO O T IO TRy O O WO IR TV N AUSTUVWY A

CONTENTS

3.3
3.4

3.2.3 Generalized Nested Dissection - I
3.2.4 Generalized Nested Dissection-II
Separator Trees v i i ittt e et e e e

Complexity Versus Structure

......................

4 Separators for Series-Parallel Graphs

4.1
4.2
4.3

Series-Parallel Reduction Rules
Separatorsof SPGraphs,
An Elimination Ordering for SP Graphs

5 Separators for Arbitrary Graphs

5.1
5.2
53
5.4

5.5
5.6
5.7
5.8
5.9

Elimination Cliques ¢ .. i i it i i it v v e

Reduction Rules for Arbitrary Graphs
A Separator Theorem for a Bipartite Tree

Using a Decomposition Tree to find Separators
5.4.1 Bounding the Number of Children
A Nested Dissection Ordering Algorithm
ABoundonComplexity,
ABoundonDeptho,
SP and GSP Graphs Revisited
Experimental Results

6 Discussion

6.1

Future Considerations « t v i v i v b i v v et e oo e

A Graph Theoretical Definitions

B Various Channel Graphs

Bibliography

vi

34
34
37
40

46
46
49
51
54
56
57

63

68
69

70

72

75

: LIV I IROC AV SEN IS BT N W) » 8.8 “at tap Saf .9 § mmmmw
n
b
L}
:,:
4.?!
N
i
%
P . .
3 List of Figures
"
A.;: 1 COSMOS Implementation 3
a?
W 2 A Simple Graph of Seven Vertices 7
:’,E 3 DAG Resulting from Left to Right Elimination Ordering 8
L
e 4 DAG Resulting from Nested Dissection Ordering 9
v
5 5 Solution of a System of Equations Under Two Permutations 12
i 6 The Fill-in Resulting From Two Different Elimination Orders 14
7 Solution of a Boolean System by Gaussian Elimination 17
\ 8 The General Series-Parallel Production Rules 19
\J
%‘::' 9 Examplesof GSPGraphs 19
Bk 10 Non-GSPGraphsuuuucuinnnnn.. 20
o
"
v 11 A 1-SeparatorforaTree0c0oc.... 23
;:. 12 A Grid Graph of Size n = k x k With Separator Set Indicated. . . . 25
'\
';:. 13 A Graph and Its Separator Tree 29
::’ 14 A Graph Resemblinga Binary Tree. oo v.... 31
<& 15 The Resulting DAG With an Ordering Due to the Minimum Degree
o Algorithm i e e e e 32
’,.‘3 16 The Resulting DAG With an Ordering Due to Nested Dissection . . . 33
ﬂ
¥ 17 Series and Parallel Reduction Rules 35
W 18 Construction of a Decomposition Tree fora SPgraph 36
:: ' 19 [Edge Labeling for the Reduction of SP Graphs 37
::v 20 Labeling for Each Node in a Decomposition Tree 38
WA 21 A Decomposition Tree After Labeling 38
-
S,
4.' vii
"'

Kod

P -
-

. - CTEAE] - WO e) D O N A T T R
A 9. AR A ‘l) f"-* .’t. B o

aia s b adth ttat et tatt et et e n bty tte 0t L VR B DL el L LR B0 R S0 V8 SeW R,

LIST OF FIGURES

22
23
24
25
26

27
28
29

E
t ;

35
36

37
38
39

40
41
42
43
44
45

R A A RN St

Recursive Algorithm for Finding 2-Separator of a SP Graph 39
Nested Dissection Elimination Ordering Algorithm for SP Graphs . 42
ASampleGraph0t eriiene.n 43
The DAG Resulting from the Generalized Nested Dissection Algorithm 44
The DAG Resulting from the Minimum Degree Algorithm 45
A Single Reduction Rulefor SPgraphs. 48
Reduction Rules for Arbitrary Graphs 49
A Decomposition Tree Fragment 49
Elimination of v; and the Resulting Decomposition Tree Fragments . 50
The Resulting Decomposition Tree 50
An Algorithm to Produce a Decomposition Tree for an Arbitrary

Graph e e e e e e e e e e e e e e 52
ARed-Black Tree. ittt ittt ettt ennnn 53
Algorithm to Find a Black SeparatorNode 55
A Reduction Ruleof Order Two 56
Modified Algorithm to Produce Decomposition Tree for an Arbitrary

3 < 58
Elimination Ordering Algorithm for Generalized Decomposition Trees 59
The Depth of DAGsforaClique 61
A Separation Set and Two External Vertices 62
A Linear Chain Graph of Ten Vertices 73
A Sixteen-Bit Shifter 0o 73
A Sixteen-Bit Logical Shifter 73
Seradd.a e e e e e e e 74
Seradd.b e e e 74
Channel Graph for a Sixteen-Bit RAMCell 74

viii

N

ata M RV NN R KLt o A AR KD

BV 1Y K WY

A R W W _W_ .

R

‘4

A

.

)

|}

:

hJ

l

.

X ®
; List of Tables
"

¢

) 1 Comparison of Minimum Degree and Automatic Nested Dissection . 27
. 2 Results for Linear Chains of VaryingLength 65
: 3 Results for 16-bit shifters 65
‘ 4 Results for 16-bit logical shifters 66
ﬁ 5 Results for RAMsof Varying Sizes 66
b 6 Results for Parity Ladders of Varying Number of Vertices 67
o 7 AFewRandomNetworks 67
A

L4

o+

y)

4
D)

)

LY

B
X

)
.
1 ix
N
) v

i ") 3 e I s »J o % PO] N T N 1S
?.A':'l.- I'u Yy .! C'r‘l'- I‘-\l.n W S A ATA I'. L} l..'{‘. .‘I‘., Sod '.‘ K m

w ol el

() 0 s] 2] W W e TR ™ ATy T IR TN :- I A N ':I‘.‘f"-l".“.f'q'- -\‘_‘-‘_-‘.\fu'_.".._.-‘ ""‘.‘f‘f‘(‘
A e T N L R R T et e, A WA WV IR Y RN

T T 6t a0 AL ' e h st “a 2B a'd s b o'hea dath A 2.a b ke ha s el W T i &]

Chapter 1
Introduction

A recent development in the continuing search for faster methods of circuit simula-
tion has been the advent of special-purpose hardware dedicated to simulation. With
a large number of small elements working in parallel, increases in speed of two to
four orders of magnitude over general-purpose computers are not uncommon. While
this equipment is well-suited to simulation at the gate level, it has not been very
successful at simulating MO S networks due to the bidirectionality of MOS transis-
tors. A variety of special-purpose hardware elements have been designed to capture
this characteristic of MOS transistors with limited success. A more promising ap-
proach has been demonstrated by the COSMOS (Compiled Simulator for MOS)
simulator, which symbolically analyzes the behavior of a MOS circuit and then
represents it in purely Boolean terms. The expressions generated by COSMOS
can then be evaluated on hardware designed for gate-level simulation.

The Boolean expressions generated are multi-level with shared subexpressions.
While simplification techniques for less complex Boolean expressions exist, none
are applicable to expressions of this type. When mapping these expressions onto
special-purpose hardware, a new definition of simplicity must be made. Just as the
limiting factor for the performace of logic is its critical path, the limiting factor
for the performance of a MOS simulator using Boolean expressions on highly par-
allel hardware is the depth of the expressions. However, optimization of Boolean

expressions to minimize depth is an issue that has not been widely discussed.

W00, 4.5,

~~~~~




m"$&%4_ s" n.' } " c‘:(‘L{ e J ] m\_\(. ‘A.ﬁ\n‘\.ﬂhﬁ‘!.

CHAPTER 1. INTRODUCTION 2

Gaussian elimination is a technique that has continually proved to be useful for
problem solving in areas other than systems of linear equations. In the COSMOS
software, Gaussian elimination is used in the analysis of subnetworks to generate
Boolean expressions. In this process, pivot selection is a crucial issue and many
methods have been proposed to minimize the total number of algebraic operations
performed. The order in which pivots are selected also affects the structure of
operations, an effect which has not been studied in depth.

Presented in this report is a pivot selection algorithm that guarantees that the
expressions generated by Gaussian elimination will exhibit balance and will there-
fore have small depth. The remainder of this chapter is dedicated to explaining
the motivation of this research in relation to the COSMOS project. Chapter 2
discusses Gaussian elimination and introduces a graph theoretic view of the algo-
rithm. Pivot selection is shown to be important for keeping the total complexity of
the solution of a sparse system low.

Graph separator theorems and nested dissection pivot selection algorithms are
the subject of Chapter 3, where it is shown that an ordering based on nested dissec-
tion results in expressions of small depth. Chapter 4 analyzes series-parallel graphs
and presents decomposition trees, which are shown to be useful for finding sepa-
rators in such graphs. With these separators, it is easy to produce an elimination
ordering for a series-parallel graph that results in small depth.

In Chapter 5, an algorithm is described that allows the construction of decom-
position trees for arbitrary graphs. These trees are constructed through a procedure
very similar to Gaussian elimination. A heuristic strategy is used for this first pass,
but it is shown that an elimination ordering that results in low total complexity can
be used to find an elimination ordering that results in small depth of the expres-
sions generated. The method has applicability to any system solved by Gaussian
elimination but is especially suited to those systems that arise in the analysis of
MOS networks. Finally, Chapter 6 briefly discusses the outcome of this work and
suggests areas for future research. Also, Appendix A is provided to explain some
basic graph theoretical terms used in this report.

(4

s .

ez

L

T AA
2% 9l

A




CHAPTER 1. INTRODUCTION

_____ Simulation User
:' '; Kernel Interface
Functional . SYMBLK | \ /
Elements | \
fTTT oo ’ . . Executable
Laec C Compiler Simulator
Transistor Boolean Model
Network ANAMOS Descriptions Code

Figure 1: COSMOS Implementation

1.1 COSMOS

COSMOS consists of a set of programs configured as shown in Figure 1. The sym-
bolic analyzer ANAMOS accepts as input the switch-level representation of a MOS
circuit and partitions it into a set of channel-connected subnetworks. It then derives
a Boolean representation of the behavior of each subnetwork. A second program,
LGCC, translates this Boolean representation into a set of C language evaluation
procedures plus declarations of data structures describing the interconnections of
the networks. Finally, the code produced by LGCC, together with the simulation
kernel and user interface code, are compiled to generate the simulation program.
The resulting program appears to the user much like an ordinary simulator, ex-
cept that the network is already loaded at the start of execution. The simulator
implements a block-level, event-driven scheduler, in which blocks correspond to
subnetworks. Processing an event involves calling the appropriate procedure to
recompute the outputs of a block.

Unlike programs that operate directly on the transistor-level description during
simulation, COSMOS preprocesses the transistor network to produce a Boolean
description. This description, formulated by ANAMOS, captures all aspects of
switch-level networks, including bidirectional transistors, stored charge, different
signal strengths, and indeterminate (X) logic values.




LY

6, TN, 0%
He h N,

"
2% VWYY

e R a5, v W T WS

e A h 0B e 88’ bk el ol fald tad 'Y,

CHAPTER 1. INTRODUCTION 4

The most novel aspects of COSMOS are found in ANAMOS. The transistor
network is partitioned into channel-connected subnetworks and the steady-state re-
sponse of each subnetwork is derived separately. Each subnetwork corresponds to
a component of the undirected graph having as vertices the storage nodes and as
edges the pairs of nodes connected by transistor sources and drains. This parti-
tioning describes the static connections in the network; i.e. those independent of
transistor state.

Typical MOS circuits partition into many small subnetworks, although some
subnetworks can be quite large. Within a subnetwork, the behavior can be complex
and difficult to analyze due to the bidirectionality of transistors and the variety of
ways in which state is formed in a MOS circuit. The interactions between subnet-
works, however, are more straightforward. Each subnetwork acts as a sequential
logic element having as input the input nodes connected to transistor sources and
drains, plus the gate nodes of the transistors. The subnetwork state is stored as
charge on the storage nodes. Its outputs are those nodes that are gate nodes of
transistors in other subnetworks.

To cast the switch-level mcdel in terms of Boolean operations, a logic value
y € {0,1, X} is represented by a “dual rail” Boolean encoding, y.1,y.0 € {0,1}, as
shown below:

y |yl yoO
1)1 0
oo 1
X|1 1

With a Boolean encoding of the state values, the problem of symbolic analysis can
be defined as follows. For each node n, introduce Boolean variables n.1 and n.0 to
represent the possible encoded values of the node state. For each node n, ANAMOS
derives Boolean formulas N.1 and N.0 in terms of the set of node state variables.
These formulas represent the encoded value of the steady-state response at each
node as a function of the initial node states.

» 70 0 W M o I IR N, TN, ] TV R PV J T N CY e e
"n U 1) 4, .cJ.o.l ' s ."‘l 'pl.a .1 s 0% W, % 17 4% 0% 1% .‘nl X *f’ " .\

........

b4
~
»

I x

i

BB SN

Rt

-

-~

dom 7 I

-

PSRN P

Sxlirs



| At ath ila-ald® o~ ta- fat B 0 o0 far Ratt 2.0 2.0 8. 0 A L A d-a b  f s S o Bg A% dla Ba -Sa fle Ade 28 al -k ol Ak tal Yol iol ol Sof Sod Kod A oA AoA ok Sd A Sl Aol ool Ak b Al b o 4

CHAPTER 1. INTRODUCTION 5

Switch-level networks resemble classical contact networks in that both are com-
posed of bidirectional switching elements. Shannon [28] first developed techniques
for analyzing a contact network symbolically. In his method, each contact is labeled
' with a Boolean literal and the conditions under which a path may form between

designated pairs of terminals are formulated as a Boolean expression. This idea
serves as the conceptual basis of ANAMOS, although M OS circuits require a more
complex method of analysis. Furthermore, most of the methods presented in the

=~

i contact network literature are not particularly well suited to computerized applica-
tions for large circuits.

1.2 Gaussian Elimination

The contact network analysis problem can be formulated as the solution of a system
of Boolean equations (7). Solution of this system relates closely to the problem of
finding expressions that describe all paths between vertices in a diracted graph.
Tarjan (29] has shown that a generalized form of Gaussian elimination can solve a
large class of path problems, including contact network analysis. When solving a
system of Boolean equations by Gaussian elimination, Boolean operations A and Vv
replace the conventional arithmetic operations.

Gaussian elimination proceeds in two parts: forward elimination and backsolv-
ing. Forward elimination propagates information about paths forward to a single
vertex. Backsolving distributes information to the vertices previously eliminated.
Forward elimination consists of repeatedly selecting a vertex v (the “pivot™) for re-
moval from the graph. The elimination of vertex v involves propagating its label to
each neighbor u through their shared edge. Furthermore, the label of an edge span-
ning each pair of neighbors « and w may be updated as well. Backsolving proceeds
by adding vertices back to the graph in the reverse order of their elimination. The
value on each vertex is computed by summing the effects of all neighbors eliminated
after v.

(0 ™ N IR T T IS T A Y
BTN L X M M My KN “ﬁ i 20

------ N

"~-f~- \\l.-. S »-*\- RN oy \';'.", e e el ."\‘. N AT AT TR L AN " g



)
)
)
b
)
|

CHAPTER 1. INTRODUCTION 6

Gaussian elimination has a distinct advantage over iterative methods for sym-
bolic analysis. Being a direct method, it requires no testing for convergence. Sym-
bolic analysis can proceed by simply constructing Boolean formulas in terms of
operations A and V in accordance with the elimination steps. A direct method
avoids the need to test formulas for equivalence, an NP-hard problem.

1.3 Expression Representation and Pivot Selec-
tion

ANAMOS represents a Boolean formula as a directed acyclic graph (DAG). A DAG
resembles a parse tree whose leaves represent variables or constants and whose
internal nodes represent binary Boolean operations. In a DAG, however, a given
subgraph may be shared by several branches, yielding a more compact representa-
tion [4]. During the analysis of a subnetwork, ANAMOS constructs a single DAG with
multiple roots, one root for each vertex and edge in the channel graph representing
the subnetwork.

Upon completion of the execution of the Gaussian elimination algorithm, the
steady-state response of the subnetwork has been computed. The DAG contains one
root for each vertex of the channel graph, and the expression indicated by that root
gives the steady state response at that vertex in the graph.

The total number of nodes in the DAG, as well as its structure, is determined by

. the order of operation on vertices in the Gaussian elimination procedure. Figure 2
shows a simple graph that could represent a pass transistor network of six tran-
sistors, or a network consisting of six switches. The vertices and edges are labeled
with symbolic values. In the Gaussian elimination procedure, the vertices in the
graph could be operated on in a number of different orders.

If the vertices are eliminated from left to right, then the DAG of Figure 3, with
depth of 24, results. Alternatively, if the vertices are eliminated in an order that
resembles that of a nested dissection algorithm, the DAG of Figure 4 results. This
DAG has a depth of only 11 operations, less than half of the other one. Each

e Y S SRk PAAANNY | VYV

Y

/h

‘&l
s
...
"
o
.,
»




AEANEAE B (1SN RENMERENETA T A TREFRNYNT R yR IR - Ll Y ‘ * \J * L LS * O * U g e ' BR'a 4% @Bi'; Ata A% B'. &’
i

CHAPTER 1. INTRODUCTION 7

Figure 2: A Simple Graph of Seven Vertices

DAG indicates the same total number of operations, but their structure is different.
The DAG of Figure 3 represents the solution of a system in which the operators
must be applied to values sequentially, whereas the DAG of Figure 4 indicates a
situation in which some parallelism cculd be exploited, given a machine capable
of such an evaluation strategy. For longer chains of vertices, the results are more
dramatic. The left-to-right elimination ordering will give expressions whose depth
grows as O(n), while a nested dissection algorithm will give expressions that grow
as O(lgn).

1.4 Parallel Architectures / Simulation Engines

The COSMOS simulator as designed runs on a general-purpose computer. Dur-
ing simulation, the DAGs representing a subnetwork are evaluated for new values
at each simulation clock cycle. An event-driven scheduling algorithm is used to
determine those subnetworks that need to be evaluated, since some subnetworks
will not require evaluation on every clock cycle. The total amount of time required
to simulate a single clock cycle is a function of the total number of operations in
each of the DAGs, and the number of subnetworks needing to be evaluated.
Special-purpose processors have been developed to accelerate tasks of logic gate
simulation {9,1,6]. Although special-purpose processors for switch-level simulation
have been designed and constructed [8,12|, they require a substantial amount of spe-
cialized hardware. It is unlikely that they will ever achieve the cost/performance
levels of processors that support only gate-level evaluation. These gate-level sim-

ulation processors use many simple function evaluators in parallel to achieve their
speed.

1 - Calp e - . Lo e ey L R N N S IR L N S R S S I T S
L Y T N T O P A S I N A A T S T R R RN T R SR T e A A O, WA



TUOE VT RS T AR AN AN T TR T TN AT N R N AN M A TN U U T VTV UN VW VLU W IW I w1 ¥ eovws = w wme o» = o~  —

CHAPTER 1. INTRODUCTION 8

x(1)

. wmom f

Figure 3: DAG Resulting from Left to Right Elimination Ordering

[ FAZ WEEXAARST W

v

* e . L I ] l.lv.hll.n - LI S ] A ] A S TS \“’-.“‘-‘
L.w..mmma:a:m-\-«:duua-whﬁ.mm&n«m;imm-mm 2



CHAPTER 1. INTRODUCTION 9

Figure 4: DAG Resulting from Nested Dissection Ordering

¥
L4

- . 4 « o o o, e o, P, P SRR SR A AR A R I Ja
0T N TEAT A0, e 5. T TR A TSP SO AAIA A A A YA A R g YA T TSR




CHAPTER 1. INTRODUCTION 10

The DAGs produced by ANAMOS resemble simple logic networks with AND and
OR operations. These expressions can be evaluated on hardware designed for gate-
level simulation. If enough processors are used, the DAGS for all subnetworks can
be evaluated in parallel and an event-driven scheduler would not be needed. In this
scenario, the limiting factor on the amount of time it takes to simulate a clock cycle
is the depth of the deepest DAG for all of the subnetworks.

It has already been shown that the structure of DAGs is influenced by the elim-
ination ordering used during Gaussian elimination. The rest of this report is con-
cerned with finding elimination orderings guaranteed to lead to DAGs with small
depth. While the discussion is presented largely in terms of Boolean expressions,

the results are applicable to other systems solvable by Gaussian elimination.




Chapter 2

Gaussian Elimination

2.1 Introduction

Although Gaussian elimination was originally devised as a technique for solving

systems of linear equations, its use has continually been shown to be applicable

to problem solving in other areas. Examples are in the solution of path problems,

the conversion of finite automata to regular expressions, and the analysis of global

flow problems [29,2]. This chapter will discuss the importance of pivot selection in

Gaussian elimination and will introduce a graph theoretic approach to the problem.
Systems of equations are represented by the equation

where M is an n X n matrix, z is an n x 1 vector of unknowns, and bisann x 1
vector of constants. If M is a symmetric positive definite matrix, then it may be
factored into the form M = LDLT where L is a lower triangular matrix and D is
a diagonal matrix. Gaussian elimination may be used to find L directly and the
equations Ly = b, DLTz = y may be solved by backsubstitution to find a solution
to the system. The total time required to perform the process is O(n3) in general.

However, if M is sparse! special provisions may be made to perform elimination

1Sparsity will not be formally defined here. It will be considered to mean a matrix, many of
whose entries are sero.

11

S i b

TS Il

NS Y

.'..I-... .'

L~y

WL




CHAPTER 2. GAUSSIAN ELIMINATION 12

12 31 7 1 2 3 A
3 1 2 2 5 7 X
M = 1 5 2 (PMPT) = 1 2
7 2 5 2 5 1
2 1 37 112
l
12 3 1 7 1 2 3 ;
25 —25 .25 1 1 ;
47 -33 2 1 2
64 .14 11
11 1

Figure 5: Solution of a System of Equations Under Two Permutations

more efficiently.

The limiting factor in the efficiency of sparse Gaussian elimination is the amount
of fill-in that occurs during the elimination process. Fill-in is defined as the number
of zero entries in the matrix that become nonzero as elimination proceeds. The total
amount of fill-in that arises from the solution of a sparse system of equations may
be limited to some extent by selecting a proper elimination ordering.

A permutation of the rows and columns of M results in a new matrix that

represents the same system of equations as M. In matrix notation, a permutation
of the system is defined by

(PMPT)(Pz) = Pb.

where P is an n X n permutation matrix. The new coefficient matrix PMPT will in
general have a different fill-in structure than M. Thus, a matrix may be permuted
before Gaussian elimination is performed in order to achieve greater efficiency. An
example of a system of linear equations is shown in Figure 5.

Both matrices in the figure represent the same system of equations under dif-
ferent permutations. The upper triangular form DLT results after the final step
of the forward elimination phase of Gaussian elimination. Notice that the solution
of the equations defined by M has fill-in terms while the solution of PMPT does

PR R P P P O N R R AR R w, e,
.....-. - L .

STRLA Y, S R AV A R e et et T R A AT N G T TR TR e L




.- - e

CHAPTER 2. GAUSSIAN ELIMINATION 13

not. This figure clearly indicates that savings in computation time may be made
by reordering the rows and columns of a matrix.

The permutation of rows and columns need not be explicit; it may be made
during the elimination step. An interchange of rows and columns is equivalent to
the selection of some arbitrary nonzero diagonal element of M as the pivot. Various
methods of pivot selection based on a matrix representation have been presented
[22]. These will not be discussed in this report. Instead, their graph theoretic
counterparts will be introduced in Section 2.2.

2.2 A Graph Theoretic Approach

Define G(M) to be the graph G = (V, E) associated with M, such that each variable
in the system of equations is associated with a vertex v;, § = 1---n, and that for
each nonzero entry M;; there is an edge (v;,v;) with head v; and tail v;. Such a
graph represents the nonzero structure of the matrix M [25|. If M is symmetric, G
may be an undirected graph. However, if M is not symmetric, (i.e., M;; # M;,),
G will have directed edges.

An elimination ordering is a bijection a: {1,2,:--,n} & V and G, = (V,E, a)
is an ordered graph. This graph may be used as an aid in selecting an elimination
ordering that produces the minimal total fill-in.

Fill-in manifests itself on the graph G as additional edges during the elimination
process. Pivoting along a diagonal element in M is equivalent to the removal of a
vertex, v, from the graph. The deficiency of v, D(v), is the set of edges defined by

D(v) = {(v,w)|(u,v) € E,(v,w) € E,(v,w) € E}
and represents the set of fill-in edges due to the elimination of vertex v. The graph
G, = (V - {v}, E(V — {v}) U D(v))

is called the v-elimsnation graph of G. For an ordered graph, G., the elimination
process

P(Ga) = [G = GO)GI’Gh" * $Gn—1]




CHAPTER 2. GAUSSIAN ELIMINATION 14

a-{3,6.7,5.4,2.l}

IF(Ge )l =

3 ® 2
§ 5 B={1,4,6,7.5,3.2}

IFiGy )l = 1

Figure 6: The Fill-in Resulting From Two Different Elimination Orders

is the sequence of graphs that result from the elimination of the vertices in the order
specified by a. The total fill-in, F(G,) is given by

n~1
F(Ga) = U D(vc.')'
i=1
Fill-in that occurs with the elimination of a vertex is a function of the elimination
ordering . An example is shown in Figure 6 which depicts a graph with two
elimination orderings, @ and 8. The elimination steps and the fill-in edges that
occur are shown. The total amount of fill-in | F(G)| is labeled for the two elimination
orderings. This example illustrates the effect of elimination ordering on the total
complexity of the solution of a system by Gaussian elimination. However, finding
an elimination ordering that produces the minimum fill-in for a given graph is a
problem that has been demonstrated to be NP-complete [13,32].
A system that may be solved with no fill-in, (i.e., F(G,) = @), is called a
monotone transitive graph or a perfect elimination graph. It can be observed that

the edges added during Gaussian elimination result in a perfect elimination graph,

G, = (V,(EU F(G.))).




CHAPTER 2. GAUSSIAN ELIMINATION 15

Rose termed this the monotone transitive extension of a graph and also characterized
these graphs as triangulated graphs [26]. A triangulated graph is one in which every
cycle of length n > 4 contains a chord. Finding the minimum set of additional
edges that results in a triangulated graph has been shown to be equivalent to the
problem of finding the best elimination ordering. Even though this observation
provides insight into the problem, it leads to no good algorithms for the selection

of an elimination ordering [19].

2.3 Path Problems on Graphs

The graph representation of a system of equations is more than merely a tool for
minimizing fill-in. The single-source path problem is to find, for all vertices v, an
expression P(s,v) that describes all paths from the source s to v. Path expressions
are built from the operators U (union), - (concatenation), and # (reflexive transitive
closure). It has been shown that the solution of this path problem on graphs also
serves as a solution to a variety of problems when the path operators are mapped
into other domains. These include the solution of systems of linear equations, data
flow problems, and shortest path problems [29]. In this paper only those path
problems where the desired expressions simply give the conditions under which a
path from s to v exists are considered.

In the Boolean algebra of this analysis (B,V,A,0,1), the operations vV and
A denote Boolean “and” and “or,” respectively, applied to functions, while the
distinguished elements 0 and 1 denote the constant functions that yield 0 and 1,
respectively, for all argument values. This algebra is sufficient to express path
expressions for a simple path analysis. For this application the operators described
by Tarjan are mapped as follows: U — v and - — A. The operator * evaluates to
1 for all Boolean values and will not enter into the discussion herein.

A vertex labeling of graph G = (V, E) is an assignment z(v) € B to each vertex
v € V. An edge labeling is an assignment A(u,v) € B to each edge (u,v) € E .
Gaussian elimination may be performed directly on the graph G to solve the linear

“» N LW LW e T TR e o e e . S P ™ e e W R I e % U ] “w . LW W 7 B P P
o, 4, ! G4 Wi ol e o
9,50 et B by N A G W T T T W N A NG W . A v

Sal

™

-

W)

- . T R W Wy,

Tw e
LA e W



CHAPTER 2. GAUSSIAN ELIMINATION 16

system Az = b when this system is recast as
Az+b=12x

where A' = I — A. The the solution to this system is the same as that for its other
form, but the reformulation allows the solution of systems of equations in algebras
that do not have an inverse under the concatenation operation (-). In particular,
systems of Boolean equations do not have an inverse under A.

The Gaussian elimination algorithm described in Figure 7 solves the single-
source path problem under Boolean algebra. It begins by placing an initial label
b(v;) representing a Boolean function on each vertex. Each edge (v, v;) is initially
labeled with A;;. Graph structure is modified as described earlier, but labels are
modified as well. At each step, before a vertex is eliminated, its label is propagated
to each of its neighbors. Likewise, the labels of fill-in edges are modified. Backsolv-
ing consists of a similar sequence of operations: propagating labels back to vertices
that are successively added to the graph. At the termination of the algorithm,
each vertex is labeled with an expression z{v;) that satisfies the single-source path

problem as stated above.

The complexity of this algorithm can be analyzed in terms of and-or operations.
Define one operation to be of the form (a V (b A ¢)). During forward elimination
two sequences of operations are performed for each vertex: propagation of values
to neighbors and calculation of labels of fill-in edges. If the graph is directed, the

total number of operations performed due to forward elimination is
n d(v,)
Y |d(vi) +2 Zj] :
i=1 j=1
Backsubstitution results in the propagation of labels back to vertex v; from each of
its d(v;) neighbors. Thus, backsubstitution contributes
z d(v;)
=1

operations. The total complexity for performing Gaussian elimination on a graph

is given by
d(v,

n )
3 |d(w) +2 E_: 7+ d(v.')]

=1

- PR A I R . P . . ey - . e e .
f“"'{".- '-,x'. 3 -’ . A ‘.-'-'. . e

Gy

1@ LSS

bk

AL




CHAPTER 2. GAUSSIAN ELIMINATION 17

{ Initial Labelling }
fort=1tondo

z(v;) « b(w)
od

{ Forward Elimination }

Vo ~—V

Eo — F

b fori+—1to (n—1)do

Vie—Via - {va.-}

Ei— E,_,n[V; x V]

‘ for each u € V; such that (v,;,u) € E;_; do

z(u) — z(va,) V [2(va;) A A(va,, 1))

for each w € V; such that (u,v,;) € E;_; and . # v,, do
if (v, w) € E; then A(u,w) « A(u,w) V [A(y,va,) A A(ve,, w)]
else E; — E; U {(v,w)}; A(u,w) — A(u,v,,) A A(ve,,w)

fi

! od
b od

od

]

. { Backsubstitution } ‘,

fori—(n—1)to1do ;
{ for each u € V; such that (u,v,) € E;; do )

z(va;) «— z(va,) V [2(u) A A(y,va,)]
od
] od

Figure 7: Solution of a Boolean System by Gaussian Elimination

Ju

N W Wy W W R B LI Y e ) - R e s - - *
Dy . N, o TSR - o P e e e e A T T A e e T e s
o T et ta ARG Gl eh CaeY ‘ L CURTRNTY .\-. IR -.‘\'_\’-..‘ A N T T

. . 2 0 Y > R OA




CHAPTER 2. GAUSSIAN ELIMINATION 18

which is more simply expressed as

Z”I [d(ve)? + d(v))] - (1)

i=1

This formula reveals that the total complexity is extremely sensitive to values
of d(v;). If the graph can be operated on in such a manner that d(v;) is bounded by
a constant for all ¢, then the complexity will be O(rn). However, in the worst case,
when G is the complete graph of n vertices, K,, complexity will be O(n3).

2.4 Choosing an Elimination Ordering

While finding an elimination ordering that results in the minimum total operation
count is an NP-complete problem, heuristics that often result in good orderings are
available [26]. One heuristic based on the results of Equation 1 relates the total
complexity of performing Gaussian elimination to the elimination degrees of the
vertices. A method called the minimum degree algorithm produces an elimination
ordering by selecting the vertex with the minimum degree each time the main loop
of the elimination process is executed.

This method is computationally efficient and will often find good elimination
orderings. For some classes of graphs the minimum degree algorithm results in the
elimination ordering that gives the least number of total operations. One example
is the class of graph termed General Series Parallel (GSP). This class of graph
expands on the conventional definition of series-parallel graphs to include graphs
containing acyclic branches. Graphs of this class may be constructed inductively by
starting with a single vertex and applying the production rules given in Figure 8.
Each rule adds a vertex to the graph, as well as one or two edges. Examples of GSP
graphs for a complex gate that might arise in an nMOS circuit and a shift network
are provided in Figure 9. The shift network channel graph is shown redrawn, to
better exhibit its GSP structure.

The importance of GSP graphs is that they arise often in the analysis of MOS
networks [7]. Graphs of this type may be eliminated efficiently by finding the reverse
of the sequence of production rules that constructed them. It is clear that since each

‘
st
¢
!
-
e
y
f

"y Y, ‘\"\"\l"'ﬁ N P SR
e e



CHAPTER 2. GAUSSIAN ELIMINATION 19

-

Acyclic Series Parallel

Figure 8: The General Series-Parallel Production Rules

I A

Complex Gate Shift Network Shift Network (Redrawn)
. bs s @
a be a3 be
.: a2 03 b3 a2
' al b2 el b2
b1 b1 @&

Figure 9: Examples of GSP Graphs

i

WS T LT T T A e R S T A Y R N N N N e N N S N N N AT T N A
s e e o DA O S s i et o athe X ‘*"'*‘." A K ~ia R AT WA



- -

CHAPTER 2. GAUSSIAN ELIMINATION 20

LA,

W

‘ ]

s

Carry Chain with Bypess
\ Parity Ladder
l
Figure 10: Non-GSP Graphs

o production rule adds one vertex adjacent to at most two others, the minimum degree
N algorithm will effectively find the reverse sequence of production rules applied. The

algorithm also results in a low total complexity since at each step an eliminated
vertex will have (at most) elimination degree d(v;) = 2. Thus, by Equation 1 the
total complexity of solving a system described by a GSP graph will be:

N
" -

5 [d(w)? + d(w)] = 6n (2)

i=1

Other graphs that arise in the analysis of MOS networks have low elimination
degrees even though they may not be GSP. Two examples are shown in Figure 10.
These graphs may be_eliminated effectively by the minimum degree algorithm with
no vertex having d(v) > 3. Thus, the minimum degree algorithm leads to low total
complexity for these graphs as well.

The minimum degree algorithm is an example of a greedy algorithm in that it
chooses vertices without regard to future eliminations of vertices. Another greedy
algorithm is the minimum deficiency algorithm. At each step, a vertex is chosen
such that D(v) is minimized. For GSP graphs, the minimum deficiency algorithm

will find a reverse sequence of production rules in a manner similar to the minimum

, . m

2 R e L S
"g-’."l“'l... Wh If J' w J' Lol -

N



CHAPTER 2. GAUSSIAN ELIMINATION 21

degree algorithm. Each Acyclic and Parallel production rule leads to a vertex with
D(v) = 0, and each Series rule introduces a vertex with D(v) = 1. Thus, at each
elimination step, a vertex with D(v) = 1 or 0 may be found. In practice, this
algorithm often produces an ordering equivalent to the minimum degree algorithm
for GSP graphs and has the same bound on elimination complexity.

A drawback of the minimum deficiency algorithm is that it is more computa-
tionally intensive than the minimum degree algorithm. Calculating the deficiency
of a vertex involves examining all of its pairs of neighbors. Furthermore, if the
implementation is not clever, this calculation will be performed for all uneliminated
vertices at each step in the elimination process. An advantage of this algorithm
over the minimum degree algorithm, however, is that for arbitrary graphs that are
triangulated, a perfect elimination ordering will be found [26]. The minimum degree
algorithm is not guaranteed to find such an ordering.

This chapter introduced Gaussian elimination and the importance of finding a
good elimination ordering. The ordering algorithms examined were greedy in nature

and were performed during the elimination process. In Chapter 3, algorithms which
4 produce an ordering before elimination begins and which guarantee good asymptotic

complexity for certain classes of graphs will be examined.

o ‘,,'.- '\’\"&"\- ‘. ~1 o .“.‘.f..a ' '-' -\,_.' TR L SO U #\-'..l'._-‘\-'.'-‘\-' ST SRt 4 Yl o ~‘.-' -‘ X .-\.'



Chapter 3
Generalized Nested Dissection

This chapter will discuss a more complicated method of finding an elimination
ordering called nested dissection which was first proposed for grid graphs that arise
in finite element analysis [14]. The algorithm’s basic idea is to use a “divide and
conquer” strategy on the graph. Removal of a set of vertices results in two new
graphs on which Gaussian elimination may be performed separately. The results
for the two parts may then be combined to find the solution for the entire graph.
This method has been shown to result in good elimination orderings for certain
classes of graphs.

An observation about the results produced by nested dissection algorithms is
that the path expressions generated in Gaussian elimination tend to exhibit a bal-
anced structure in which a parallel evaluation strategy may be used [23,24]. The
importance of balanced expressions was discussed briefly in Chapter 1. Later in
this chapter, the structure of expressions will be analyzed in more detail.

3.1 Graph Separators

A separator of a graph is a relatively small set of vertices whose removal causes the

- graph to fall apart into a number of smaller pieces. If S is a class of graph, n is

the number of vertices in a graph, and p(n) is some function of n, then S satisfies a
p(n)-separator theorem if there are constants a < 1 and 8 > 0 such that a separator

22




:
E

.
\:

¥
]
.
L]
L]

0 TR Ry Y "
':"‘-' OASON A

‘. \*\ .‘ LY ..*'.' .‘. '...'. :.'_-,,"\‘-. .\ \"- -‘\’.- ..-. "'\‘_af\ ;.."'-'ﬁ"- - - Y% P

YW W e WYY T TR TR T TTTET N T R T RT R RNV TR RTE R ETE R RERTEE T

CHAPTER 3. GENERALIZED NESTED DISSECTION 23

Figure 11: A 1-Separator for a Tree

set with at most Sp(n) vertices separates the graph into components with at most
an vertices each.

Most algorithms based on separators are recursive, first finding a separator for
the whole graph and then finding separators for the components. For these algo-
rithms to work on a graph of class S, all subgraphs of this graph must also be
of class S. When a class satisfies this requirement we say that S is closed under
subgraph.

Binary trees are a class of graph that is closed under subgraph; separation at
any vertex separates the graph into two smaller binary trees. Figure 11 shows a
binary tree and its decomposition into two smaller trees at a single vertex separator.
This theorem is stated for binary trees [16]:

Theorem 1 The class of binary trees satisfies a 1-separator theorem for a = § and

g=1.

A planar graph is one which can be drawn on a plane so that the edges of the
graph only intersect at their endpoints[S]. For planar graphs, the following theorem
is taken from Lipton and Tarjan [21].

Theorem 3 The class of planar graphs satisfies a \/n-separator theorem for a = §
and f = 2/2.

In more recent work, Djidjev proved that the theorem also holds for 8 = /6 [10].

0.0 o B% B9, #% W

e e .

a \'.\"‘v"\ ‘#v

P T 8 Wy Ty

-




b Y

-

%)

- SR T T . S S T% P
«"\ ln"-o f‘ A »‘. - ‘.

CHAPTER 3. GENERALIZED NESTED DISSECTION 24

Series-parallel graphs have long been used to represent simple electric net-
works [11]. Such graphs may be constructed by the application of series and parallel
production rules. These graphs obey the following theorem.

Theorem 3 The class of series-parallel graphs satisfies a 2-separator theorem for
a= ; and f = 1.

This is accepted as a folk theorem. We will defer its proof until the next chapter,
which is devoted to series-parallel graphs.

These theorems are presented to provide examples of the types of separators
that have been shown to exist, and lead to algorithms for finding separators for
limited classes of graphs (i.e., binary trees, planar graphs). Except for the simplest
cases, finding separators is a non-trivial problem and no good algorithms exist for

finding separators greater than two in size for arbitrary graphs.

3.2 Elimination Ordering Algorithms

Many variations of elimination ordering algorithms are based on nested dissection.
These algorithms have the following basis as a common starting point. The main
differences involve the separators found for different classes of graphs and the re-
sulting complexity bounds.

Given a graph G with n vertices, partition the graph into parts C. A, A,, etc.,
such that C is a separator of the graph. Number the vertices in C from n down to
(n — |C| + 1) so that they are eliminated last from the graph. Recursively number
the elements of each of the remaining parts of G, (A,, A3, --) from 1 to (n — |C}).
The procedure continues until all vertices are numbered. Typically, the recursion
will cease when the size of a set reaches some small threshold value, ny, in which

case the vertices of the set are arbitrarily assigned numbers in the given range.

3.2.1 Nested Dissection

Alan George proposed the first nested dissection algorithm [14]. It was defined only
for grid graphs for which there are simple separators. Figure 12 shows a grid graph




kAl 0 0k A L"l"'YT

CHAPTER 3. GENERALIZED NESTED DISSECTION 25

e w e W w——

ﬁ
'—
& 4

T

»~

Figure 12: A Grid Graph of Size n = k x k With Separator Set Indicated

with n = k x k. Removal of the middle column and middle row separates the graph
into four subgraphs. The algorithm is as follows. Assume that k is one less than a
power of two.

e Remove row (k + 1)/2 and column (k + 1)/2. Give the highest numbers to
these 2k — 1 vertices.

e There are now four components of the original graph. If their sizes are greater
than one, recursively number the components. Otherwise, number the four

vertices in the range specified.

Graphs where k is not one less than a power of two may be handled by adding

some number of “dummy” vertices. This algorithm is well suited for finite element

mesh analysis and results in O(nlgn) fill-in and O(n?) total operation count.

[
L
[
' {
4
4
5
“
’
f
¢
d
d
l
A
-\
]
~
-
~
A
L]
i
[
L]




r‘wmmﬂﬂﬁﬂwmwmmmmm

CHAPTER 3. GENERALIZED NESTED DISSECTION 26

3.2.2 Automatic Nested Dissection

Wy WA N N i Y YV WS

This algorithm is defined for any arbitrarily connected graph [15]. A graph may
be partitioned into levels by performing a breadth-first search beginning at some
starting vertex v. Each level, Ly,...,L, is a partition of the graph. L, contains
vertex v, L, contains those vertices adjacent to v, L, contains those vertices two
edges away from v, etc. Each level is, to some extent, a separator of the graph. The

algorithm is as follows:

e Partition the graph into levels Ly,..., L, by performing a breadth-first search
on the graph.

o The vertices of level s = |(r + 1)/2] separate the graph. Choose a minimal
subset of L, that is still a separator and assign the highest numbers to these

vertices.

e Recursively number each component (there may be more than two) whose

size is greater than no.

It has been suggested that this algorithm results in O(nlgn) fill-in for a number
of finite element meshes. While it may have asymptotic complexity approaching this
limit, we have observed better performance from the minimum degree algorithm
described in Section 2.4. Table 1 shows the results we have obtained for a variety
of square grid graphs of size /n x /n.

3.2.3 Generalized Nested Dissection - 1

This algorithm was derived by Lipton, Rose and Tarjan [20]. Given a graph G of
class S that obeys an f(n)-separator theorem with constants a and 3, partition the
graph into three parts A, B, and C, such that C is a separator of the graph with
no more than §f(n) vertices.

e If there are no more than ny, = (;&)’ vertices, number them arbitrarily in

the range specified.




CHAPTER 3. GENERALIZED NESTED DISSECTION

Grid | Minimum Degree | Automatic Nested
Size Algorithm Dissection
(n) [ fill-in | complexity | fill-in | complexity
16 18 172 22 200
25 37 350 46 420
36 71 678 100 1032
49 122 1228 165 1824
64 178 1840 240 2822
81 280 3198 321 4010
100 376 4442 454 5996
121 487 6078 612 8556
144 649 8662 819 12086

Table 1: Comparison of Minimum Degree and Automatic Nested Dissection

o Find sets A, B, and C that satisfy the \/n-separator theorem where C is the

separator set.

e Assign the vertices ¢f C the highest numbers.

o Delete all edges whose endpoints are both in C. Apply the algorithm recur-
sively to the subgraph induced by BUC and also to the subgraph induced by

AUC.

The vertices of C are included in the recursive call; therefore some method of
recording which vertices have already been numbered is required. This algorithm
was analyzed in particular detail for classes of graph that follow a y/n-separator
theorem. From a result of Lipton and Tarjan we know that planar graphs satisfy
a y/n-separator theorem [21]. The ordering produced by this algorithm will result
in O(nlgn) fill-in and O(n}) total operation count for planar graphs, although

the coefficients of the actual fill-in and operation counts are very large. However,

27

the authors believe that their worst-case bounds are very pessimistic and that the

algorithm would be useful for very large graphs. Applications of such a theorem

include finite element meshes (which are planar embeddings of a planar graph) and

GSP graphs, which also belong to the class of planar graphs.

S";ISJ':‘ .r:" g ’:'Sn‘.':‘¢;.-,'f nr




[P U UW U L LWL N ORI OO Y T T T T OTTTVITUTOTUIT UYUT e V'Y U U U oW oTt “a 4%a $Ya B'2 872 472 4°2 842 2°2 2'2 8'e 2'2 &'2a R'a d'a ds t'2 b 2 b

- - - . - - “ . " - - - U B S g Sl - - C e .
:’ - _».-*. " A AT AT Al T o (T T \1’*-1'.'#‘\ u-\.r‘. "N \(\. \-"\_I \._,‘f ,.-"..1\-’_ “ _‘-r:.-; . \I\.‘,. o ,.-’.‘. \I_ 2, o L
* (] B . . . . a L) - .

CHAPTER 3. GENERALIZED NESTED DISSECTION 28 .

3.2.4 Generalized Nested Dissection - 11

A variation to the generalized nested dissection algorithm of the preceding section b
has been proposed for separators that divide the graph into more than two pieces, 4
A and B [16]. This algorithm assumes that the separator C splits the graph into

pieces A,, A;,---,A,. A separate recursive call is made for each part, 4;,1 <¢<r.

o If there are no more than ng vertices, then simply number the vertices arbi-

trarily in the range given.

¢ Find a separator with k < §/n vertices that divides the graph into pieces
Ay, Az, -, A,, where |4;| < an. Number the vertices of C arbitrarily from
(n—|C| +1) to n.

e Call the algorithm recursively r times for each component 4;, 1 << r to

number the remaining vertices in the range between 1 and n - |C|.

TP " BARDT I

X _E_r

This algorithm differs from the previous one in that it does not include the
vertices of C in the recursive call. Also, by recursing on more than two subgraphs
at each level it does not, in general, result in the same bounds for fill-in and total
operation count. However, for planar graphs, the same bounds are met. For other
classes of graph with /n-separator theorems it may even perform better [16]. For
the rest of this report, the term “generalized nested dissection” will be considered
to refer to this variation. ‘

3.3 Separator Trees

.
The recursion of the algorithms described above suggests a natural decomposition of E
graphs in terms of their separators. At the highest level is a separator that divides 3
the graph into components. These components themselves l.uve separators, and so
on. At the lowest level are components that may be divided no further, possibly N
containing only a single vertex. This decomposition may be described in terms of

a structure called a separator tree.

‘e s ™ -8

N

A ACNEREAE
LN L N AP N ALY 3 * AT AT TR



mmmmmmmwmm‘ﬂv Lol A A A T AL S "'"‘-"'.)-"."'.'.7'1

CHAPTER 3. GENERALIZED NESTED DISSECTION 29

(1—0 2 ® 3oj
e AN

SEEE ‘5) Z_& ,

@2

fofigalifs:  SARAFAIWS 2o A  rILASSA ) e

Figure 13: A Graph and Its Separator Tree

A separator tree for a graph is shown in Figure 13. Such trees graphically show

how separators arise from a graph; they also reveal where fill-in may occur. The

following theorem is from [27].

Theorem 4 Let G = (V,E,a) be an ordered graph. Then (v,w) is an edge of G, 1
if and only if there exists a path p = [v = vy,vz,-+, V441 = w] tn G, such that

a"}(v) < min(a™(v),e"}(w)) for 2 < i < k.

This theorem states that an edge (v, w) fills in if and only if there is a path from v
to w containing only vertices eliminated before either v or w.

Theorem 4 may be used to calculate bounds on fill-in due to a nested dissection
algorithm. Consider a node of the separator tree C, and its subtrees A4;, 4;,- -, A,.
Since there are no paths between A; and A; initially (for any two subtrees where
 # 7), and the elements of C are given higher elimination numbers than those in
A; and A;, there may not be a fill-in edge between any member of A; and A,. Thus,
the separator tree shows that the only possible fill-in that may occur is along the
edges of the tree, or between the vertices of an individual node of the tree. This

fact may be used to calculate bounds on the total amount of fill-in using a nested

dissection ordering algorithm for some classes of graph.




CHAPTER 3. GENERALIZED NESTED DISSECTION 30

3.4 Complexity Versus Structure

Nested dissection algorithms are based on a divide-and-conquer strategy that suc-
cessively splits the graph into smaller subproblems to be solved independently. In-
formation about the smaller problems is then combined to find the solution of the
whole. The discussion on separator trees showed how this technique could lead to
bounds on the amount of fill-in that occurs and also bounds on total complexity.

The divide-and-conquer approach also leads to path expressions that exhibit
balance. Gaussian elimination can be viewed as the propagation of information
through a graph. Path expressions are built by propagating information about
the graph to one point and then propagating the information back to all points.
The structure of the expressions generated depends on how the information flows
through the graph, which is determined by the elimination ordering.

In Chapter 1, a simple graph as shown in Figure 2 was eliminated with two
different orderings of vertices. Elimination of vertices from left to right resulted
in the DAG of Figure 3, while a different elimination ordering resulted in a more
balanced DAG, that of Figure 4. The elimination ordering of the second can be seen
to be one that would be produced by a generalized nested dissection algorithm,
eliminating the middle vertex (a separator) last.

A graph resembling a binary tree is shown in Figure 14. The minimum degree
algorithm could result in a number of different elimination orderings, one of them
as shown in Figure 15. The resulting DAG is shown as well. Once again, this DAG is
not balanced, but is “long and skinny.” A generalized nested dissection algorithm
would guarantee elimination of the vertices in an order similar to that depicted in
Figure 16. The resulting DAG for this ordering is shown as well. It is obvious that
this DAG is more balanced, just as the DAG of Figure 4. We can say that this DAG
is “short and fat.”

In many situations, these path expressions of the DAG are calculated symbolically
(as shown) and used repeatedly to solve problems that involve different labelings

of graphs with the same structure. A long, skinny expression tree means that all

operations must be performed sequentially, whereas a more balanced tree shows a

{ 5SRO NPT R T4 PRI Y W W I S Iy VI Ry




CHAPTER 3. GENERALIZED NESTED DISSECTION 31

Figure 14: A Graph Resembling a Binary Tree

level of independence among the operations. An appropriate architecture may take
advantage of this independence by using multiple processors to exploit fine-grained
parallelism.

In general, the expressions generated by Gaussian elimination using nested dis-
section ordering algorithms are balanced, and hence have small depth, if there are
good separators for the graph. In the following chapters algorithms that lead to
the identification of separators for a variety of graphs will be presented. The extent
to which they separate the graph will be shown to lead to an upper bound on the
depth of expressions generated.




CHAPTER 3. GENERALIZED NESTED DISSECTION 32

b(2) b(5) b

Figure 15: The Resulting DAG With an Ordering Due to the Minimum Degree
Algorithm

PR

>y, XY,

-t

L]

i}

Toe M e e e % A PLFS T AN LY B A AN N T SN INE N Y a2 o Fa Ty 2 L C o o, o W S O D
S A T T D D O e S G L T L O RS T, 0



PNy

RO O YO YO o @ fa?_gov Sotat datodattat e’ 82V taf BtV a6 G’ o' e’ et Ua’afE’ ta' s gls 't i ' AL LA

CHAPTER 3. GENERALIZED NESTED DISSECTION 33 »

LR R R
N T

TR PR -~

Y > % s r_»

i

b(7) 1 b(3)

Pl AR

o R W

Figure 16: The Resulting DAG With an Ordering Due to Nested Dissection

r <

¥
A X

¢ e

(s

T el L L S O -"—'-"'-'.'-' A O A A A A AN N A R L RO L PG PO A



'l'i\&‘v

Chapter 4

Separators for Series-Parallel

Graphs

In this chapter some properties of a class of graph called Series-Parallel (SP) are
examined.. This class of graph is often used to describe electrical networks, since
many networks are composed of only series and parallel connections of elements.
Reduction rules for SP graphs are developed first. It is then shown how these can
be used to find separators for these graphs.

4.1 Series-Parallel Reduction Rules

SP graphs may be described by the composition of their edges in terms of Series,
S, and Parallel, P, reduction rules. The two rules are shown in Figure 17. Each of
the rules results in the reduction of the number of edges in the graph hy one. By
the application of a sequence of these reduction rules, it is possible to reduce a SP
graph to a single edge. For SP graphs the following applies.

Theorem § A multigraph is SP if and only if st can be reduced to the trivial SP
graph (two vertices joined by a single edge) by a sequence of series and parallel
reductions.

This is a trivial generalization of a corollary proposed by Duffin [11]. Thus, the
application of these reduction rules may be used to test if a graph is indeed SP.

34

'U"\n . 'i"h S -.f..f" ‘\{ -ﬂ’- o I IR \’\ 3 e

Ul Lo il iyt L 0 iy (U o L A, W P A AV Yy

AR r Ry T A

e m_a s o

PR EEY.

> vV v

-~ Y AT NN O ERTAT TN AN A e sl W LN S



_“mmmvwmmw Paa A G 1 64 " AN DA N LA AT

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 35

-1 0-1

Figure 17: Series and Parallel Reduction Rules

There may be many different combinations of the rules that result in a single edge,
all of which being valid reductions of the graph. This particular set of reduction
rules has been shown to possess the Church-Rosser property [30] which means that
the order in which the rules are applied will not affect the possiblity of reducing the
graph to a single edge.

The manner in which the reduction rules are applied to a graph can be described
by a binary decomposition tree [31]. Such a tree is analagous to a binary expression
tree, where the operators represent functions performed on the edges of the graph.
Figure 18 illustrates the construction of a decomposition tree for a simple SP graph
where endpoints are used to identify the edges. A decomposition tree may be built
by labeling the edges of the graph for each reduction where the labeling procedure

is described in Figure 19. The initial labels of an edge are assumed to be the set of
its endpoints.

-
-
4
Ca
o,
W
>

"'I 5

It is interesting to note that if the P and S operators are interpreted as the
Boolean operators vV and A, the decomposition tree gives all paths between the
two remaining vertices in much the same manner that the expressions generated by
Gaussian elimination describe paths for all pair of vertices. In fact, the reduction
procedure described is identical to the forward elmination step of Gaussian elimi-
nation where vertices are intially labeled with z(v;) = 0 and the ordering algorithm

used is simply the selection of some vertex with d(v;) = 2.

W e

L7
T oo

:"-. '3 -’

T AT T e W T AT AT (Rl n G Y A P o I T TR O A TN B A AL ROt s ‘s
kﬂ?&?ﬂh‘:‘)\? .d':" }?TA"?*:&I:(MT:’:’Q :}hm&{\_c&\\*\-ﬁ' o \."x%\.\'n.ﬁ.' A IR LN SIS Y o PN P D

A




CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS

— 6

3 7 (1.2) (2,5) 3 \

(6.7) (4.,7)

T

(P
A 0 4 (16)
(1.2) (2,5) (7) (6.7) (4,7)
(4.5) ()
(3,5) (3,4)

(6.7) (4.7)

(1.2) (2,5) (3.5) (3.,4)

Figure 18: Construction of a Decomposition Tree for a SP graph




CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 37

teta -l

a b

Figure 19: Edge Labeling for the Reduction of SP Graphs

4.2 Separators of SP Graphs

Earlier a theorem that SP graphs have 2-separators for a = § was provided (Theo-
rem 3). In this section it is shown that, with a proper labeling of the decomposition
tree of a SP graph, such separators may be easily found.

Each S node in the decomposition tree represents the removal of one vertex
from the graph. Each S node, n, will be assigned an internal weight i(n) =1 to
reflect this. Conversely, a P rule represented the removal of no vertex, but only the
removal of an edge. Each P node will be given an internal weight s(n) = 0.

Each node n in the tree, either S or P, represents a separator of the graph. Its
total weight

win)= 3 i(p)

pEdescendants(n)
gives the number of vertices separated from the rest of the graph by this separator.
A mapping between nodes in the tree and separators may be easily constructed by
the proper labeling of each node in the tree with an additional field. Each leaf node
represents an edge, (v;,vz). A Series combination of two SP subgraphs defined by
their endpoints (v;,v;) and (v;, vs), results in the separator set (vy,vs) that serves
to separate everything internal to (v;,vs) from the rest of the graph. Parallel rules
always combine two subgraphs whose endpoints are the same. By labeling each

node of the tree with the endpoints of the subgraphs they represent, each node
will be labeled with a separator pair. Figure 20 shows the labeling operations for

.‘.’ft’: 9

series and parallel rules. By applying these from the bottom up each node in a

decomposition tree may be labeled with its separator set and total weight. The tree

N | SO AARARAL R

a

-----------

=



LA
-

-

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 38

b
v

* [ a

Sa(ad a Se(a.c) .
' Wawi @ . — Wawlew2el :-.(:‘b)@ ::(:;) - ::(:.t:’,;
&(b.cl@ ° ®

‘;_ e ¢ st Wew2 U :-.‘:,? '@ O :-"‘l’: ,

2

b4

14
) Figure 20: Labeling for Each Node in a Decomposition Tree

o

¢
<

\l

Wa5

¥
<

. Wa1 Wat

L s-0.5 (P) (S) se(a.6)
N Wai (1.,5) (4.5) 7) (4.7

> ss(1.5) (S) (6.7 (4.7

A

” (1.2) (2.5) (3.5) (3.4)

‘I

¢

: Figure 21: A Decomposition Tree After Labeling
§'_f of Figure 18 is shown again in Figure 21 with each node labeled with the proper

' total weight w and its separator set S.
It should be noted that the weight of the root of the decomposition tree is two
¥ less than the total number of vertices in the graph. This is because the weight of each
:3‘ node represents how many vertices would be separated from the rest of the graph,
F not including the two vertices of the separator set. The algorithm of Figure 22 is i
:'.: a direct implementation of the general step of the constructive proof and finds a !
_"Z 2-separator in a graph for which a decomposition tree has been constructed. In the

o~ next section this function will be used as part of another algorithm for computing

Y a™ et R
o

-t . N AT .,'- o ,‘- *\ » J,\._'. '_\‘,'..,\ '_'. '_\ J‘\..-" ;,\'



. gl gn

oy e N Y

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 39

function Find2Separator( tree T, weight W) returns tree
If w(T) < 4 then return T

else
if w(LSON(T)) < w(RSON(T)) then
Find2Separator(RSON(T), W)
else
Find2Separator(LSON(T))
fi
fi

end Find2Separator;

Figure 22: Recursive Algorithm for Finding 2-Separator of a SP Graph

an elimination ordering for a SP graph based on nested dissection. At this point

the theorem that SP graphs have 2-separators with a = § will be proved.

PROOF: Nodes are examined in the decomposition tree starting at the root and
descending through the tree. The general step of the proof will eventually accept
a node as a representing a valid separator of the SP graph. W represents not the
total weight of the tree, but the number of nodes in the graph. For each node in the
tree there is a separator set of size two that separates the vertices of its descendent
rules from all others in the graph. It is obvious that some node, n1, whose weight is
less than or equal to %W may be found but it remains to be shown that the weight
of everything else in the tree, (W — [w(nl) + 2]), is also < 3W.

INITIALIZATION: nl is the root of the tree.

INVARIANT: W — (w(nl) +2) < 3W. This is initially true when n1 is the root since
W = w(nl) + 2.

GENERAL STEP: Find the child of nl with the greatest weight. Call this node

n2. If w(n2) > }W then repeat the general step with nl «— n2. The invariant still
holds.

™ 2 e e % T L Tm TN T e TR e e e e e R R Y et e e e "

.......... ~ L

2 -'n'—- A '-h - » - -
X ﬂ i 5 [:‘_ ‘a’!I Ll ""\i‘r"'; SR PN R R LR

IR AR, | P RN EARID

ARL<INT D



CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 40

Otherwise, n2 is a node that represents a separator set of size two that divides
the graph as required. The weight of n2, w(n2), is small enough; it remains to be
shown that the weight of the rest of the graph without the separator set is small

enough as well.
It is known that w(nl) > 3W. Also, since each node in the tree has two children

and (at most) internal weight 1, w(n2) x 2 + 1 > w(n1). Therefore,

1 1
w(n2) > §W — 5
The number of vertices in the rest of the graph is given by (W — [w(n2) +2]). Using

the previous relation we get

2 3
(W - [w(n2) +2]) < §W -3

which indicates that both parts are small enough.
Y m|

4.3 An Elimination Ordering for SP Graphs

The method of finding separators for SP graphs discussed above, can be used to
produce an elimination ordering using a procedure based on generalized nested
dissection. While SP graphs can be eliminated efficiently using the minimum de-
gree algorithm, we can expect the nested dissection elimination ordering to yield
expressions that will exhibit balance, and whose depth will be small.

An obvious implementation of a nested dissection algorithm would proceed as

follows:

o If there are only one or two vertices, number these in the range specified.

T W VR W T

Build a decomposition tree for the SP graph.

Find a separator for the SP graph with decomposition tree given by the algo-
rithm of Figure 22.

Number these two vertices the highest.




e 3

N N

YT T VERNTY U TV N SO E X NN NV Y W T

T

—TTEvY ¥ X W

nan o o e o o

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 41

¢ Elimination of the separators results in two new SP graphs. Recursively num-
ber these.

This would not be very efficient however, since it would require the building of
a decomposition tree for each subgraph. A key observation of the decomposition
tree is that the removal of a node splits the tree into two trees that describe the
subgraphs of the original graph defined by the separator. The recursive algorithm
presented in Figure 23 produces an equivalent elimination ordering by relabeling
fields of the modified decomposition tree instead of rebuilding a tree each time.

The algorithm assumes that a decomposition tree has been produced and cor-
rectly labeled as described earlier. The variable n is assumed to contain the total
number of vertices in the graph, and global variables ElimCnt and ElimNums
are used by the procedure Assign Number for the numbering of vertices. Another
function called Label is responsible for recalculating the weights of the entire tree
when a subtree has been removed.

Removal of a node from the tree may be reflected by simply marking its weight
field, w, to zero. The procedure Label does not descend past nodes with zero weight.
Upon completion of the algorithm, the vertices of the graph will be numbered in an

order that represents nested dissection for a SP graph.

Applying the elimination ordering produced by the algorithm of Figure 23 to
Gaussian elimination to a system of Boolean equations represented by the graph
of Figure 24, the DAG of Figure 25 is obtained. For comparison, the results of
the minimum degree algorithm are shown as well in Figure 26. As expected, the
generalized nested dissection algorithm for SP graphs yields expressions with a small
depth (13), while the minimum degree algorithm resulted in expressions of depth
20.

The algorithm proposed for finding separators of SP graphs is interesting in that
it closely resembles the forward elimination part of Gaussian elimination. In the
next chapter, this technique will be expanded to handle graphs that are not SP.

......................

AR i':u..‘

ATETA AT Tt T, et
SRS EN I I Vs, W PR PRI IS e iy

A o A A

. "mm AL = 2 A " s AU P P P L L L LA L+ A s 2 s s 3 WleNePu XX A D i Cedndibdiondioe i




we v KN

wTev

‘at, ab, gl 4 U U i, gty g% gt ai, ¢, pt Rty gy gta-

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 42

type nodetype = (Series,Parallel);

type tree = pointer to record

verts sl, s2; { The vertices of the separator set}

int w; { The weight of the node}

tree LSON, RSON; {The two children of this node}

nodetype rule; { Whether this node represents a Series or Parallel rule}
endrecord;

{Global variables}
int ElymCnt =n;
array of int ElimNums|l..n] = {0,0,---,0};
procedure AssignNumber(vert v)
if ElimNums(v] = 0 then
ElimNums|v] — ElimChnt;
ElimCnt — ElimCnt - 1;
fi
end AssignNumber;

function Label (tree T) returns int
if T.w = 0 then return 0;
else
T.w = Label(T.LSON) + Label(T.RSON);
if T.rule = Series then T.wT.w+ 1; fi
return T.w;

fi
end Label;
procedure ComputeOrdering( tree T)
if T.w = 0 then
AssignNumber(T .s1);
AssignNumber(T .s2);
else
t — Find2Separator(T);
AssignNumber(t.s1);
AssignNumber(t.s2);
t.w « 0;
Label(T);
ComputeOrdering(T);
ComputeOrdering(t);
fi

end ComputeOrdering;

Figure 23: Nested Dissection Elimination Ordering Algorithm for SP Graphs

LI I R N I N L I N A T I I e AT N L L AL T Pt T T S e e e TS e s et e T S
e BN N T St AR TN N T T L ._\‘\.\‘ N A T e T A ,

<,



CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 43

Figure 24: A Sample Graph

ettt i i
e e i e e e e e e e e AT LA At A L SN N N ._f"f._tmxm



CHAPTER 4. SEPARATORS FOR SERIES PARALLEL GRAPHS 44

LTLY} "

Figure 25: The DAG Reaulting from the Generalized Nested Dinsection Algorithm

P S L S U T . [P P R AN R
Al A N A T N SR AT A R T R TR TR T O O R A N

o« 8 A"

T vy



W W

........ a ata &} PP \ 8, gt VIWUVINANW D 2 Ve
CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 45
x{1)

b(1) 1

Figure 26: The DAG Resulting from the Minimum Degree Algorithm

.......
----------

et T RN N LA  NA

-

Y A.
IS MAS LIRS

T S T 3% IR DS
S

W AP



Chapter 5
Separators for Arbitrary Graphs

The identification of separators in arbitrary graphs is a difficult problem. While
there are good algorithms for finding bi-connected [3] and tri-connected [18] compo-
nents in graphs that lead to the identificaton of 1- and 2-separators, and algorithms
that find separators for certain classes of graph, (e.g., planar graphs), there are no
good algorithms for finding separators in arbitrary graphs. Identification of only
the 1- and 2-separators in a graph is not sufficient, and arbitrary graphs are not
guaranteed to have them anyway. A more general method of finding separators for
use with a nested dissection ordering algorithm is desired.

This chapter will develop a method for finding separators in arbitrary graphs
based on decomposition trees. Reduction rules will be formulated based on the
elimination of vertices that occurs in Gaussian elimination. Using an elimination
ordering that gives expressions of small total complexity, it will be shown that the

elimination sequence can be reordered to obtain expressions of small depth.

5.1 Elimination Cliques

In the previous chapter, an algorithm was presented for finding 2-separators in SP
graphs. The reduction rules proposed for SP graphs repeatedly modified the graph
until a single edge remained. It was shown that the resulting decomposition tree

for SP graphs gave information about paths through the graphs, and that in this

46 ~




..... g 0 vy $:0.0 0.0 gt pad el Bt hn" o Aa's MU OO e WL WL W Wy

CHAPTER 5. {EPARATORS FOR ARBITRARY GRAPHS 47

respect, was very similar to the result of Gaussian elimination for Boolean systems.
In fact, the Series reduction rule is exactly the process that occurs in Gaussian
elimination when a vertex of degree two is removed: one vertex is removed and a
fill-in edge is added to the graph.

An important observation of the information presented in Chapter 4 is that the
endpoints of each edge and fill-in edge represented a separator of the graph. In
the elimination of SP graphs, each edge that fills in does so to maintain paths that
existed between tws vertices before the elimination of a vertex. Theorem 4 stated
that an edge (v, w) fills in only if there is a path from v to w containing only vertices
eliminated before either v or w. The endpoints of such an edge separate all vertices
comprising the path from the rest of the graph. Since an eliminated vertex in an SP
graph may only contribute to one fill-in edge, it is possible to record the vertices in
the paths defined by a fill-in edge by using an appropriately labeled decomposition
tree for each edge in the graph.

Each step in the forward elimination phase of Gaussian elimination results in
the removal of a single vertex, v;, from the graph. For SP graphs, a vertex has
exactly two neighbors at the time of its elimination. The basic operation is the
same whether there is an edge between the neighbors of v; or not. This one rule is
illustrated in Figure 27 and indicates an optional edge between two vertices. If there
is an edge, elimination of v; does not result in a fill-in edge, but merely a labeling
of the edge with a new value. If there is not an edge, elimination of v; results in a
true fill-in edge. In either situation, the set of the neighbors of v; is a 2-separator
of the graph, separating one or more vertices from all others in the graph. For
the purpose of finding separators, a single reduction rule may be defined: the SP
reduction rule. The application of this one rule involves merely finding any vertex

with two neighbors.
In an arbitrary graph, there may be more than two neighbors of v;. However,

the set adj(v;) still serves to separate v; from the graph. Because the number of

neighbors of v; may be greater than two, the result of elimination of v; is not, in

general, a single fill-in edge, but is the set of edges

C(vw) = {(¢v,w)|u € adj(v;),w € adj(v;),u # w}.

Y R 2 P

3,
3.




CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 48

Figure 27: A Single Reduction Rule for SP graphs

This is similar to the deficiency of a vertex, but includes edges already present in
the graph as well. The set of vertices, adj(v;), and edges, C(v;), form a clique!
in the graph, G;, resulting after elimination of v;. The edges represent sections of
all paths of which v; was a member. In SP graphs, there was exactly one of these
edges. However, in an arbitrary graph, v; is a member of all of the paths defined
by the edges C(v;).

Elimination of another vertex, v;4y1 € adj(v;), results in another clique in the

graph G,;,;. The edges of this clique contain information about v;4; and v;, since
(adj(vi) — {vis1}) € adj(vis1)

and paths between members of adj(vi4+1) through previously eliminated vertices
include paths through adj(v;). This can be stated as the foliowing:

Theorem 6 In the elimination process, the vertices defined by adj(v;) separate v;
from the rest of the graph. If v; € adj(v;) and j > 3, then adj(v,) also separates v;
from the rest of the graph.

The structure appearing in this process is the elimination clique and its boundary
vertices. In SP graphs, this was a single edge, and a labeling scheme could simply
use edges to keep track of information concerning the constituent vertices of a path.

However, the arbitrary sized elimination clique suggests no such simple labeling
scheme.

1This clique is sometimes referred to as an elimination cligue.




L8 ald afaraiar s oNAt i rd e 8ot o a i e Bt Bl A Al Shu gl tad. ‘s’ sl el “ato et at ‘el Sub Vel gh tad tal Bad Aol bl taf oot auf syl sallSul Bad Sad Goh toh S Gud Bl Al Sl TP R Sl AN

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 49

Figure 28: Reduction Rules for Arbitrary Graphs

‘ v a v
N - >
V.
|
b b @
Figure 29: A Decomposition Tree Fragment

5.2 Reduction Rules for Arbitrary Graphs

A simple set of reduction rules for arbitrary graphs can be formulated in terms of
the Gaussian elimination procedure discussed. Each rule removes a single vertex
from the graph and adds fill-in edges to keep all existing paths present. The new
reduction rules have as their single criterion for application the number of neighbors
of vertex v;. Figure 28 shows a few of the reduction rules for small numbers of

neighbors.

These reduction rules may be built into decomposition trees that are similar
to those presented for SP graphs. However, these trees are no longer binary and
will have two types of nodes: separator sets and reduction rules. A reduction rule
contains the vertex it eliminated, v;, and is also associated with a separator set node
which contains adj(v;). We can represent reduction rules graphically as shown in
Figure 29.

After application of a reduction rule, the graph has one fewer vertex, and a

decomposition tree fragment has been constructed. These fragments are joined

................

| TSR AENS | JEAIAT T Y

N s Am P PP A



-

Couiran o Y

YT T rY Y

Castan s an g i 4. = =

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 50

aw | a.b,cJ r a.b.v+]

b

Figure 30: Elimination of v; and the Resulting Decomposition Tree Fragments

Figure 31: The Resulting Decomposition Tree

into a tree structure whenever possible. Consider elimination of v; as shown in
Figure 30. There are now two decomposition tree fragments. Through application
of Theorem 6,it is known that since v; € adj(v;), adj(v;) separates v, from the graph
as well. This relationship can be reflected naturally in the joining of tree fragments
as shown in Figure 31.

An algorithm for the construction of a decomposition tree is presented in Fig-
ure 32. Initially, there is a graph G and an empty set of tree fragments, F. Applica-
tion of a reduction rule to a vertex v results in a new tree fragment with a separator
set node S, and reduction rule node R. Any existing fragments in F whose root

(which is a separator set node) contains v is a candidate for joining as described

above. At the termination of the algorithm, there is one tree fragment in I', which




...............

.....

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS

is a decomposition tree for the entire graph.

This algorithm poses an interesting problem. The order of selection of the
vertices determines the separator sets found as well as their size. Since it is desired
to find separator sets of minimum size, the problem is identical to that of minimizing
d(v) in Gaussian elimination. Once again, the minimum degree algorithm is a good
heuristic that minimizes d(v) for all v in the types of graph with which this report
is most concerned: GSP graphs and other graphs that may be reduced by rules of

small order.

5.3 A Separator Theorem for a Bipartite Tree

A theorem presented for an unusual tree will later be useful for finding separators
for arbitrary graphs. This tree has two types of nodes, red and black. A red node,
r, has internal weight, ¢{(r) = 1, and a black node, b, has internal weight, i(b) = 0.
The total weight of a node n (of either type) is the sum of the internal weights of
all descendants of n.

win)= 3 ip)

pEdescendants(n)
Each of these nodes may have any number of children, which must be of the opposite
type; thus, it is a bipartite tree. The root of the tree is a black node and leaves of

the tree are red nodes. Figure 33 shows a sample red-black tree with appropriate
i weights labeled. Red nodes are represented by circles, and black nodes by squares.

The weight of the root node w(root) = W indicates how many red nodes there
are in the tree. If the number of children of all red nodes in the tree is bounded by
some constant, k, then we can show that there is a black node whose removal from
the tree causes the tree to split into parts, none of which will have weight greater
than ;5 W + 5.

Theorem 7 A Red-Black tree of total weight W sn which no red node has more
than k children has a black node b that separates the tree into parts, each of which
has weight less than or equal to W + 31



- -

v v

-

T I Y T W T

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 52

{Given G = (V,E) }

type SeparatorSet = record
set, sons
endrecord;

type ReductionRule = record
vertex, order, sons
endrecord;

ReductionRule R;
SeparatorSet S;

Fe—0
fori=1tondo
VeV~
E «— E U D(va,);
new R; S « null;
R.vertex « v,;; R.order — d(vs,); R.sons — @;
{See if a separator set with these elements has already been found}
for each SeparatorSet t € F do
if adj(va;) C t.set and S # null then t.sons «— tsonsU { R };S —t fi
od
if S = null then
new S; S.set — adj(va,); S.sons — { R}
fi

{ Try to find sets to add as descendants }
for each SeparatorSet t € F do
if v,, € t.set then
R.sons — R.sons U {t};
F — F—t;
fi
od
F — FU S;
od

Figure 32: An Algorithm to Produce a Decomposition Tree for an Arbitrary Graph




CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 53

P miains  SACUWNE S

-
T x

Figure 33: A Red-Black Tree

PROOF: Black nodes are examined starting at the root of the tree and descending
through the tree. It is obvious that some black node, b,, can be found whose weight
meets the ;2-W + ;L criterion, but it must also be shown that the total weight of
all nodes not descendants of the current black node, W — w(b;), does not exceed

the criterion.
INITIALIZATION: b, is the root of the tree.

INVARIANT: W — w(by) < g5W + ;4. This is true for the initial case since

GENERAL STEP: Find the child of b, with the greatest weight. Call this node r.
Ifw(r) <; “W + 0 +x' then b; is the node that satisfies the reqmred criterion.
Otherwise, find the largest child of r and call it b;. If w(b;) > 55 W + 11, then
repeat the general step with b, «— b;. The invariant still holds.
Otherwise, it is claimed that b, is the black node that separates the tree as
required. It is known that w(b;) meets the criterion. It remains to be shown that
the weight of all nodes that are not descendants of b;, W — w(b;), does not exceed

the criterion. Since a red node may have at most k children, it is known that

k 1
> :
w(bz)Xk+1_w(r)>k+1W+k+l

k+l

Therefore,

1 1
b w -
w(’)>k+1 +

1
k(k+1) k

.-4-..-(1 ‘e RS
O A S I AL I A AR g .



CHAPTER 5. SEPARATORS FOR ARBITEARY GRAPHS 54
and,
1 1
wh) > e 3% e 1
Finally, ) .
W —w(b) <W — W —
w(ba) < e+ 1 Py
k 1
W — < w
w(by) < k+1 + k+1
o

An actual implementation of the algorithm as described appears in Figure 34.
This algorithm simply implements the tests described in the proof. It will be used

later in this chapter as part of another algorithm.

5.4 Using a Decomposition Tree to find Separa-
J tors

In the decomposition tree proposed, each separator set node is a valid separator of

the graph for some value of a. This section will examine how a good separator for

the graph may be selected, and what values of a can be expected depending on the
reduction rules applied.

The decomposition tree proposed in this chapter is in fact a red-black tree.

Separator set nodes correspond to black nodes, reduction rule nodes to red nodes.
The weights proposed for red-black trees calculate the number of reduction rules
under any given node in the decomposition tree, and hence, give the number of
vertices of the graph separated by a given separator set. Removal of a black node

in the tree corresponds to the removal of the separator set from the graph. The

number of nodes in each remaining part of the graph is the total weight of the
corresponding part of the decomposition tree. Theorem 7 states that this can be
bounded for some value of k. For a decomposition tree, k is the maximum number
of children of any reduction rule in the tree. It will be shown that k is dependent

on the reduction rules applied.

B, TSRS ET W RS IFF. . )

P e a0

SOV W A



b\ A% e B A%

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 55

' function RedBlack(tree T, int k, int W) returns tree;
) if red(T) then
maz — Q;
‘ for p € children(T) do
\ if w(p) > w(maz) then maz «— p
od
RedBlack(maz, k, W);
else
{Are at a black node }
if w(T) < l% W +i; then
return T;
else

Paf S ala

maz «— Q;
for p € children(T) do
if w(p) > w(maz) then maz —p
od
if w(p) < g¥; W then
return T;

e d

else
RedBlack(maz, k, W);
1 fi

end RedBlack;

Figure 34: Algorithm to Find a Black Separator Node




CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 56

Figure 35: A Reduction Rule of Order Two

The number of children of any reduction rule is directly related to the order of the
reduction rule applied. (R, is called order O, R, order 1, R; order 2, etc.) Consider
a reduction rule of order two as shown in Figure 35. The parent node of this rule
must be a separator set containing two vertices. The only possible separator sets
that could be children of the reduction rule are those that include the vertex, v,
and some subset of the parent separator set, {u,w}. The four possible subsets are:
{v}, {u,v},{v,w}, and {u,v,w}. For any reduction rule of order k, there may be,

at most, 2* separator sets as children.

5.4.1 Bounding the Number of Children

The previous section stated that a reduction rule of order k could have, at most,
2% children. This is true only in the worst case. Consider a graph in which all
reduction rules are of order two (an SP graph for example). While each reduction
rule has the potential for having four children, each will have at most two, since
each of its children must be sets containing two vertices. In general, if a graph can
be described entirely by reduction rules of order k, then each reduction rule will
have, at most, k children.

For decomposition trees in which there are reduction rules of varying orders,
the number of children of a reduction rule may be limited by merging some of its
child separator sets together. This may increase the size of the separator sets, but
decreases the number of children of the reduction rule.

As stated earlier, a reduction rule may have as children the separator sets whose

elements are the eliminated vertex and some subset of the parent separator set. Of

T I T T : P
LR -.- ........... ST * \ LOURA - \
X e S ,_"._4';’-._"._"._"‘_' -. «."\.’ " " ’ ',’,‘_'_L{\. "o ¥ T n.'f "";_I ( l." "n.'fn.."‘;f;!" - ._!;'S(A S".. IR .’(';1 -A‘- - n". J‘. j‘- o T e



DL Ao RS L i Sl R R Sl Al Sl Sad o0 A Ao AF A ale aid oSl Rl olh of

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 57

the 2* separator sets which may be children of the reduction rule of order k, k of
them are “maximal” subsets of k elements in the sense that all other separator sets
of k or fewer elements are subsets of one of these sets. If there is no reduction rule
in the tree of order k + 1, then it is known that these k separator sets will be the
only children of the reduction rule.

The algorithm of Figure 36 is similar to the algorithm of Figure 32 but ensures
the merging of separator sets by creating the k£ maximal subsets of a reduction rule
as its children. A procedure called MakeSubsets is used which constructs the set
of maximal separator sets. When an existing separator set is found which is a subset
of any of these maximal subsets, it is simply merged into the set, adding its children
to the list of children of the newly created maximal subset. In the event the existing
separator set is not a subset of any of the newly created maximal subsets (in which
case it must be the one possibl - subset of k + 1 elements), it is simply added as a
child of the reduction rule. By applying this process, decomposition trees may be

created which obey the following theorem.

Theorem 8 In the decomposition tree for a graph described entirely by reduction

rules of order k or less, each reduction. rule will have, at most, k children.
This theorem and combined with Theorem 7 leads ta the following:

Lemma 1 A graph described entirely by reduction rules of order k or less has a
k-scparator with a = m m and ﬂ = 1.

5.5 A Nested Dissection Ordering Algorithm

The decomposition tree can be used to produce an elimination ordering in much the
same manner as the algorithm proposed for decomposition trees of SP graphs. The
algorithm of Figure 37 takes as arguments a decomposition tree T, and a separator

criterion k. Auxiliary procedures are defined as follows:

RedBlack: Finds the separator set node in the decomposition tree that meets the

i
e
V'
b
-
0
g

MRERE A g4~ bu

P - . ) .'.i‘.'. .'-'.'_ .............
L f. _;.(AI:'A L\Llh(k\ Ladaanada ga -i,- Iu:. J“AV.A'.A".A_' ._L._,_.I.‘, -f.i‘.;. " -{.i._t._;"f.r-f.p’.r.-(w S d( {s’\ﬁ _{_




Lolar fat fa e e Bat Bal fol Rab fab R0 S8 A0 Aot b

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 58

{Given G = (V,E) }

type SeparatorSet = record
set, sons
endrecord,;

type ReductionRule = record
vertex, order, sons
endrecord;

ReductionRule R; SeparatorSet S;

F+—0
fori=1tondo
V=V —v,,;
E — EuU D(va,);
new R; S «— null;
R.vertex « vq,; R.order « d(va;); R.sons «— MakeSubsets(va,,adj(va,));
{See if a separator set with these elements has already been found}
for each SeparatorSet t € F do
if adj(va;) C t.set and S # null then t.sons «— tsonsU { R }; S« t fi
od
if S = pull then
new S; S.set «— adj(vq,); S.sons — { R}
. fi

{ Try to find sets to add as descendants }
for each SeparatorSet t € F do
if vg; € t.set then
{ See if there is a superset present }
bool found = FALSE;
for each SeparatorSet s € R.sons do
if t.set C s.set and not found then
s.sons «— s.sons U t.sons; found = TRUE;

fi
od
if not found then R.sons — R.sons U {t};§
F — F-t;
fi
od
F «— FU S;

od

Figure 36: Modified Algorithm to Produce Decomposition Tree for an Arbitrary
Graph

. e P P R R ) PRI L TN R TV R R A S - e Tt el . « S . B R T -
v Ja e Lo e %0 AN G 1 T G A O L L L TRy R N T T T T N R
B '~ Rl o i aPL A adld o8 ot L A » . - L) 3 N h B ey



Wmmwmmmmw.ﬂmvxvmv\m.v."»"JV\'V*.‘-"\.'V‘-.'V‘.'V‘.*".'v BN e ‘."'"!

-l
e

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 59

' e -,
SN -V.

procedure GeneralizedOrdering( tree T, int k);
if T is a leaf reduction rule then
Number(T.vertex);
return;

Colmt S

fi

p — RedBlack(T, k, w(T));

for each v € T.separator do
Number(v);

od

S « p.sons;

{Remove this separator set node from the tree}

(p-parent).sons = {p.parent).sons — p;

RelabelParents(p);

GeneralizedOrdering(T);

for each p€ S do
GeneralizedOrdering(p);

od

end GeneralizedOrdering;

Figure 37: Elimination Ordering Algorithm for Generalized Decomposition Trees

given k value and returns this node.

Number: Receives a vertex as an argument and assigns it an elimination number.

This function begins numbering at n and number vertices in a descending order.
The function “remembers” those vertices that have already been numbered, and

does not re-number them.

RelabelParents: The tree is assumed to have weights initially calculated for each |

node. Removal of a node requires relabeling of the weights of only the nodes above

it in the tree. This procedure follows parent links to perform this renumbering.




rwmmmnwn*t*vxwmwmmmﬂmwmvwmrv S TR IR TR SN TR A T NERTRTWNTYEY,

| M R Vel
»

o,

Y ) v \ N ', P N A R B

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 60

5.6 A Bound on Complexity

The total number of operations in a DAG produced by this method is a function of
the largest reduction rule applied. Consider a graph which is described by reduction
rules, all of which are of order k or less. Each separator set will have k or fewer
vertices, as will the subgraphs defined by the set of vertices not belonging to any
separator set. The elimination degree of each of the vertices belonging to these
subsets can be no more than d(v) < 3k for the following reason. Each of the
vertices can be adjacent to two separator sets which have no more than k vertices,
and may also be adjacent to vertices in its own subgraph of which there are fewer
than k vertices. Thus, each of these vertices will have d(v) < 3k.

Similarly, at the time of their elimination, each of the vertices in the separator
sets may be adjacent to two separator sets (of k vertices), and to the other ver-
tices of its own separator set. Thus, each of these vertices has d(v) < 3k. These
facts, coupled with Equation 1, gives the total complexity of performing Gaussian

elimination by this method as no more than
(9k* + 3k)n,
which is
O(k*n).
Thus, k may be viewed as measuring the sparsity of a graph. Small values of k
occur for graphs which are sparse, while the largest value k£ may take on, n, occurs

for a complete graph for which the complexity of performing Gaussian elimination

is known to be O(n3). The expression above correctly captures this fact.

5.7 A Bound on Depth

The DAG generated by Gaussian elimination has depth dependent on the manner in
which vertices are eliminated. The generalized nested dissection algorithm presented

in this chapter can be analyzed for bounds on the depth of DAGs generated.

AL S Nl RSN S

AT N P I IR I LTI I I < . R ) L N R - ‘
R O A P S A S AR LT AN DN LN,



e L am ag oo

A BRI S
M -.r..-'.‘w'.r v

N,

X(4) x(2) a x{3) b x{4) ¢

b(1)
b(2) b(3) 1) e b1} ¢
N :
b(4) (4)

b(1) b

Figure 38: The Depth of DAGs for a Clique

The elimination of the vertices of a clique results in a total amount of depth

added to the DAG as described by the following.
dd.'qu,(k) = ddgq“(k - 1) +3+ ﬂg k1

dch'quc (2) =4

The calculation for a clique of two vertices is trivial. The other part of the recurrence
will be explained with the aid of Figure 38, which illustrates a clique of four vertices.
Elimination of vertex 1 results in the DAGs under construction for vertices 2,3 and 4
growing deeper by two operators. The second half of the figure shows what happens
during backsubstitution. The edges a,b and ¢ each contribute a depth of 1 to the
DAG of vertex 1 with an V operator, while the A operators may be balanced with
total depth [lg4]. Thus, the amount added in the recurrence is (2 + 1 + [Ign]).

A separator divides the graph into two or more subgraphs. Prior to its elimina-
tion, all of the vertices of the two subgraphs have been eliminated except for one in
each subgraph, as depicted in Figure 39. Elimination of these two vertices external
to the separator results in a clique formed among the vertices of the separator. The
depth of DAGs for a clique has already been explored; the addition of two external
vertices must be considered next. If the separator is of size k, then the separator
with its two external vertices almost form a clique of k + 2 vertices, except that

there is no edge between the two external vertices. This recurrence makes use of

AN AN - e > SR N
N N . \.r_ /\ ' .r.-. \.__.._.,.r_. o .r\-’\ _.\. * .-_._.r_a-..— .-\.' T -.r .r G Gt NS A

»

3 .
o~ ..

y v v s



e I TS R

"\ln L *f

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 62
k-separator k-adaes
) g
LA
°
I
]
o
)

Figure 39: A Separation Set and Two External Vertices
the formula for describing the depth of a clique.
duep(k) = datigue(k) +4 + [I1g(k +1)]

The value of d,.,(k) has been calculated for a few values of k as shown in the table

below. The function grows very slowly; its asymptotic growth is O(k Ig k).

durp (K)
5
10
15
21
28
35
42
50

00 =3I O N W N

From the decomposition tree for a giver.1 graph, the size of the maximum reduc-
tion rule applied, k, can be found. This value also bounds the best value of a that
can be achieved using the separators shown in the decomposition tree. Each of the
subgraphs defined by the separator will be eliminated to a single vertex in a similar
manner, with a constant amount of depth added to the DAG. The size of the largest

subgraph is guaranteed to be roughly ﬁ of the total graph.

FAP T IRIS R I '(::J-;.- J'f.'r-rf.-.r.r‘f P AN A RAEATST AT PO

N L A A A N A N N A AT AN N

N \-"'s

Py

- e o




—rw“-:'wvmn‘r WL WY

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 63

The following recurrence describes the manner in which depth grows for a given
number of vertices in a graph, n, and the maximum sized separator, k. Dy(n) is a
function that calculates the upper bound on the depth of DAG generated for a given
number of vertices with a maximum reduction rule of order k.

k

Di(r) = Dul3

n) + d,ep(k)
The solution to this recurrence is given by

Dy(n) = . 2 d,ep(k)
1Siglogy sy n
which is
O(|klgk] logs41 n)
Thus, sublinear growth of the depth of DAG can be guaranteed with this method.
However, as k gets large, the coefficients increase and the logarithmic growth of

depth degrades.

5.8 SP and GSP Graphs Revisited

The separator theorem developed in this chapter can be seen to be a generalization
of the separator theorem for series-parallel graphs. SP graphs can be completely
described by rules of order k or less with k = 2. Therefore, for SP graphs the
generalized decomposition tree finds 2-separators with a = §

General Series-Parallel graphs were similar to SP graph except that they in-
cluded acyclic branches. This class of graph is important in that they may be used
to describe most MOS circuits that arise. GSP graphs may be described by reduc-
tion rules of order 1 and 2. Therefore, 1- and 2-separators for GSP graphs with
a= % may be found, and the DAGs representing the solution of such a network will

have depth that grows as O(lgn).

LN

AT T EEETREUNLY VU ML N W W UM Y “ad N LR “ ek “Sat el S St fal G

R AL AL I LN s e T LTI LI Mt AR AT NN e o LoD . g e e -
_.}---.-','. '-P.'{“J‘J‘" .".".'{'.{"I\,‘ e . J.H-.'\{\."i i vrf.‘f'-“.f"f"\-‘.‘../_'),“. ‘.‘..F"-'

AR

Y e N g

MR LAY A

A R

e W v e
[ . e



'Yy II}"I.".’A ?Ff

NN

-~

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 64

5.9 Experimental Results

The generalized nested dissection algorithm described in this chapter has been im-
plemented and tested for a variety of graphs that occur i MOS networks. Channel
graphs for some of the networks are shown in Appendix B. The DAGs generated
were assumed to represent binary Boolean operators and were analyzed for their
minimum depth. DAGs may be rearranged to decrease their depth through a very
simple procedure. Often, the elimination process results in a long chain of Vv op-
erators that may be rebalanced into a shorter tree. This was accounted for in the
program that analyzed the minimum depth of a DAG.

For all coi~; arisons, the results of a minimum degree ordering algorithm along
with the resul.s of the generalized nested dissection algorithm have been shown.
The minimum degree algorithm has been observed to minimize the total number of
operations for most of the graphs presented, while the generalized nested dissection
algorithm tends to minimize depth. In most cases, there is a tradeoff between these
two: a decrease in depth results in higher total complexity.

This first group of graphs contains linear chains of the number of vertices indi-
cated in Table 2. While chains of the lengths presented do not occur often in real

networks, they dramatically illustrate the tradeoff between depth and complexity.

DAGs resulting from the minimum degree algorithm are essentially a straight line
of operators in which only one operation may be performed at a time. However, at
the increased expense of more total operations, the DAG produced by the generalized
nested dissection algorithm has significantly less depth. For the longest chain of 100
nodes, the DAGs differ in depth by almost a factor of 10, indicating that a machine
capable of parallel evaluation could evaluate the response of a network described
by this graph ten times faster than a general purpose computer.

Shift networks present a difficult problem for Gaussian elimination. No algo-
rithms that result in a low value of total operations have been found. Table 3 shows
the results obtained for three different sixteen bit shifters that rotate data one of
three possible bit positions. Usually, the generalized nested dissection algorithm

resulted in lower depth with nearly the same total number of operations. These




(822 2.3 2.5 2,80 82 02 8 2 20 4'al’s et fig Abo-Rég fo ite 00 A Ria-a0a A io Ll Ao Sabarate-aby Sl ahe at o aa el Ale AN, ‘Al R B Bie i MR T Y Nee el BRI IEAL R S e e e Tw

~———

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 65

Chain | Minimum Degree | Generalized Nested
Length Algorithm Dissection

(n) | depth | complexity | depth | complexity

10 36 36 17 60

20 76 76 25 164

30 116 116 27 284

40 156 156 32 388

50 196 196 35 308

60 236 236 35 628

70 276 276 41 732

80 316 316 41 852

90 356 356 41 972

100 396 396 43 1092

Table 2: Results for Linear Chains of Varying Length

Shifter Minimum Degree | Generalized Nested
Algorithm Dissection

depth | complexity | depth | complexity

shft16-014 112 1632 100 1632

shft16-012 126 904 92 924

shft16-013 130 1364 109 1364

Table 3: Results for 16-bit shifters

results are encouraging. While the savings in depth were not large, there was no
extra cost in total operations for two of the shifters and very little for the third.
Logical shifters do not exhibit the same level of complexity for solution that
rotational shifters do. The results are shown in Table 4 and are very interesting
with respect to the tradeoff between depth and complexity. Two of the networks

could be solved with a significant savings in depth with a corresponding increase in

complexity. The other two were solved with negligible savings in depth, but with
no increase in total operations.

A number of RAM cells are shown in Table 5. Each of these networks can be
described by reduction rules of order 1. Parity ladders of varying numbers of nodes

Y MR T Y BRI

e AN A N SN Ny S N NN S I



N
i
- CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 66
W
:. Shifter Minimum Degree | Generalized Nested
Iy Algorithm Dissection
" depth | complexity | depth | complexity
\ Ishft16-01 | 128 128 29 304
Ishft16-012 174 372 64 748
| Ishft16-014 97 832 92 832
{ Ishft16-018 77 616 74 616
g
K Table 4: Results for 16-bit logical shifters
_": RAM Minimum Degree | Generalized Nested
’ Algorithm Dissection
depth | complexity | depth | complexity
L ram4 28 32 13 40
ramlé 39 100 20 132
> ram32 41 164 21 196
N ramé4 | 50 30| 23 436
- ram256 61 1220 31 1476
Table 5: Results for RAMs of Varying Sizes
t
0
" are shown in Table 6. Each of these may be described by reduction rules of order
:‘: 3, and hence, have 3-separators. The results of performing Gaussian elimination
4 on both of these types of networks shows a logarithmic growth of depth. These
N results indicate that the algorithm does, in fact, perform well for graphs that can

- be described by small reduction rules.

A few miscellanous networks are shown in Table 7. Seradd.a and seradd.b repre-
sent two separate subnetworks in a serial adder circuit, and par4 is a parity genera-
tor for four bits. These results once again illustrate the tradeoff between depth and
. complexity, indicating that the generalized nested dissection algorithm degrades to
! a level of performance comparable to that of the minimum degree algorithm for

graphs without good separators.

‘.




CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 67

e -

Parity | Minimum Degree | Generalized Nested
Ladder Algorithm Dissection
depth | complexity | depth | complexity
b 10 37 62 39 76
20 92 152 85 220
30 147 242 97 376
40 202 332 113 606
50 257 422 150 940
60 | 312 512 | 155 1160 )

Table 6: Results for Parity Ladders of Varying Number of Vertices

Network | Minimum Degree | Generalized Nested :
Name Algorithm Dissection
depth | complexity | depth [ complexity
seradd.a 23 64 23 64
seradd.b 17 24 10 24 3
par4 25 88 24 88 i

Table 7: A Few Random Networks




Chapter 6
Discussion

This report has analyzed the expressions generated by Gaussian elimination with
a metric not widely discussed. While the depth of an expression has not been an
issue in the past, the introduction of highly parallel hardware makes it an important
consideration. It was shown that depth can be minimized by the proper selection
of an elimination ordering through nested dissection and that the growth of depth
can be bounded as a function of characteristics of the graph.

Two separate topics have been examined in this report. One is a method for
solving systems of Boolean equations, and the other is a method of finding separators
in arbitrary graphs. It is curious that the general framework of Gaussian elimination
is common to the solution of both problems. The use of separators to produce an
elimination ordering for Gaussian elimination results in a strange double use of the
general Gaussian elimination algorithm: once to find separators and then again to
actually solve the system. In fact, the actual code was written as two identical
Gaussian elimination shells, with operators replaced as necessary.

The method presented for computing an elimination ordering is especially suited
to those graphs that can be completely decomposed using reduction rules ¢f small
order. GSP graphs were shown to be able to be eliminated with all vertices having
elimination degree of two or less, resulting in efficient solution of systems described
by GSP graphs with small total depth. This is fortunate, since the original applica-

tion was the simulation of MOS networks, most of which can be described by GSP

68

- 'I-I-f;f‘f-f 'I'F','."N' f.,~ \ " ~ xf\f r. \\ o n '\- .\._..'«.. RS \.. - _‘;A‘-. e e

'w"vl. t N

()



) CHAPTER 6. DISCUSSION 69

' graphs.

. While the main intent of this work was to find a way of optimizing the DAGs

describing MOS networks for depth, the method is applicable to any graph. The

' order of reduction rules applied, k, was shown to determine the depth of the resulting
DAG. Experimental evidence also showed that there seemed to be a tradeoff between

; depth and total complexity. For graphs that did not have good separators by the
method, the resulting DAG was similar in depth and complexity to that produced by

the minimum degree elimination algorithm, which is considered to be good for many
classes of graphs. This is a desirable characteristic, indicating that the algorithm

proposed degrades grac~iully, rather than simply not working at all.

6.1 Future Considerations

This work has raised a number of interesting questions. The basic algorithm used
in the production of a decomposition tree is the minimum degree algorithm; other
methods should be examined. In particular, a nested dissection algorithm should
be applied at this stage to produce an elimination ordering for finding the decom-
position tree. This tree would then be used to produce an elimination ordering to
solve the system.

Finally, there may be other methods of explicitly minimizing the depth of ex-
pressions. A method based on a greedy depth algorithm was explored and looked
promising, but the results were inconclusive. While separators divide the graph,
they do not guarantee that the subgraphs induced have nearly the same “span”, or
length of longest path in the graph. Depth is clearly related to how far (in edges)
information travels in a graph. Explicit minimization of this factor could lead to

DAGs of even smaller depth.

g

............
..............

LA A P A It S g - o Te B I T Y v a et ettt v al -
LSS TRGIARRS B N N NG e T e e, Ly T U T TP S S 2 N R L L

-



4 & & ¥ F

s

Appendix A

Graph Theoretical Definitions

A short introduction to some basic terms from graph theory will be given here.
Most are standard (see [17]).

A graph G = (V, E) consists of a finite set of n = |V| vertices and a finite set
of m = |E| edges. Edges are pairs of vertices with E C {(v,w)lv,w e Vv # w}. I
(v,w) is an edge, vertices v and w are adjacent and edge (v, w) is incident to v and
w, which are ite endpoints. The number of edges incident on a vertex is its degree.
The set of vertices adjacent to v are denoted adj(v) and are sometimes also called
the neighbors of v.

If the edges are unordered pairs then the graph is undirected, otherwise it is a
directed graph. An edge (v,w) in a directed graph has a tail v and a head w. A
directed graph is called a digraph. A vertex v of a digraph has an associated sndegree
and outdegree. The number of edges whose head is v is the vertex’s indegree and
the number of edges whose tail is v is its outdegree. A vertex whose indegree is 0
is called a source and a veriex whose outdegree is O is called a sink.

If the set of edges is a multiset, that is, if multiple edges between the same two
vertices are allowed, then the graph is called a multigraph. A directed multigraph
is called a multidigraph.

Graph G' = (V',E’) is a subgraph of G if V' CV and E'C E. YW C V, the
induced subgraph G(W) = (W, E(W)) where

EW) = {(v,w) € Elv,w € W}.

70

------------------------------




.........

N
\ APPENDIX A. GRAPH THEORETICAL DEFINITIONS 71
k'

. A complete graph is a graph in which each pair of distinct vertices is joined by an
2 edge. A clique of a graph G is a subset S of V such that G(S) is complete.

3 A path of length k between vertices v and w is a sequence of vertices v =
) Yo, V1, -+, ¥ = w such that {y;_;,v;} is an edge for 1 < ¢ < k and all the ver-
. tices vy, -+, v; are distinct. If v = w the path is a cycle. If every pair of vertices
:’_ in G is joined by a path, then G is connected. A chord is an edge that joins two
N vertices in a cycle that are not adjacent. A chordal graph is one in which every
- cycle of at least four vertices has a chord

. If vertices of a graph can be partitioned into two sets V; and V; such that every
2 edge has one endpoint in V; and the other in V;, the the graph is a bipartite graph.
¥ Similarly, if the nodes of a tree can be partitioned into two sets such that every
: edge has one endpoint in each of the sets, then the tree is a bipartite tree.

N

N
e

)
[

L AP L P e L) - v - N M . “y “u -
! AN e, NS AN ol el . "ot
&':\.'CLM‘&-{&':&{&*A'{A.J:L‘_\AA.".A_','A_f‘_l"x;.\'AJ.‘A.',._‘J_L' ARV ATV o P s e IS




. e e

Appendix B

Various Channel Graphs

72

R I I R S A T N
e T T SIS NN SISO

FATNGN

------

v?-’v" J-"

N -
'-J‘\-;.._\_\ AL SRR




&g picg b’ & ‘B b fat ¢ ga' Bt Ut be® s baabe’ e a5pate N i’ el Gl St S “al tal o’ Alniat o ahe ate 4'a Bis b - Y, ™

: APPENDIX B. VARIOUS CHANNEL GRAPHS 73
[}

o PN PY *——eo - - . o
4§

Figure 40: A Linear Chain Graph of Ten Vertices

Figure 41: A Sixteen-Bit Shifter

o NN

)
; Figure 42: A Sixteen-Bit Logical Shifter
L)
T R o B B A e Y OO R L RO L G I
\ S R e APt e e N e e LN e ST I R e I A e A e N IS R A e S L P S L T S S S



-~
A

'

W

E
:

APPENDIX B. VARIOUS CHANNEL GRAPHS 74

OO

Figure 43: Seradd.a

=

Figure 44: Seradd.b

W
Z0N
AN

Figure 45: Channel Graph for a Sixtecn-Bit RAM Cell

A e - e a o -

e TE LN e W R L TR AN MY e e P L ettt et et At et E Ty T T e et et e ke ae {---

R T B N N B e N (77 S o o LR R T DDA LSty L LS U ok tvied



"

‘n'-’\
L

Yy

EN M,
"B

N

=1

It

Bibliography

[1] ZyCad LE-001 and LE-002 Product Description. ZyCad Corp., 1982.

[2] S. K. Abdali and B. D. Saunders. Transitive Closure and Related Semiring
Properties via Eliminants. Theoretical Computer Science, 40:257-274, 1985.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compslers: Principles, Technigues,
and Tools. Addison-Wesley, 1986.

[5] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. The Macmil-
lan Press Ltd., 1982.

[6] R. E. Bryant. Conversation, 1986.

[7] R. E. Bryant. Papers about a Symbolic Analyser for MOS Circuits. Com-
puter Science CMU-CS-86-114, Dept. of Computer Science, Carnegie-Mellon
University, Pittsburgh, March 1986.

(8] W. J. Dally and R. E. Bryant. A Hardware Architecture for Switch-Level
Simulation. IEEE Trans. on Computer-Aided Design of Integrated Circuits,
CAD-4(3):239-249, July 1985.

(9] M. M. Denneau. The Yorktown Simulation Engine. In 19th Design Automation
Conference, pages 55-59, ACM, 1982.

W LT P e Y DRI T e
W L L L o



{vav\ W Y P T T T T 7 T T Y T R S T e F N TR INYN AR ANASAA A A A0 Bbh N AL A 3 el A A IR D R el b e b

E i S~ R AR I R e W WW W W RN

T Ay

n un

BIBLIOGRAPHY 76

[10] H. N. Djidjev. Separator Theorems for Planar Graphs. Doklady Bolgarskos
Akademis Nauk, 34(2):163-164, 1981.

[11] R. J. Duffin. Topology of Series-Parallel Networks. Journal of Math. Anal.
and Appl., 10:303-318, 1965.

(12] E. H. Frank. Switch-Level Simulation of VLSI Using a Special-Purpose, Data-

[riven Computer. In 22nd Design Automation Conference, pages 735-738,
ACM, 1985.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[14] A. George. Nested Dissection of a Regular Finite Element Mesh. SIAM Journal
on Numerical Analysis, 10:345-363, 1973.

[15] A. George and J. W. H. Liu. An Automatic Nested Dissection Algorithm
for Irregular Finite Element Problems. SIAM Journal on Numerical Analysss,
15:1053-1069, 1978.

[16] J. R. Gilbert. Graph Separator Theorems and Sparse Gaussian Elimination.
PhD thesis, Stanford University, December 1980.

[17] F. Harary. Graph Theory. Addison-Wesley, 1969.

[18] J. Hopcroft and R. E. Tarjan. Dividing a Graph into Tri-connected Compo-
nents. SIAM J. Computing, 2(3):135-158, Sept 1973.

[19] J. A. G. Jess. Some New Results on Decomposition and Pivoting of Large
Sparse Systems of Linear Equations. IEEE Trans. on Circuits and Systems,
23(12):729-738, December 1976.

[20] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized Nested Dissection.
SIAM Journal on Numerical Analysis, 16(2):346-358, April 1979.

(21] R. J. Lipton and R. E. Tarjan. Applications of a Planar Separator Theorem.
SIAM Journal on Computing, 9(3):615-627, August 1980.




BIBLIOGRAPHY

[22] L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Cir-
custs. PhD thesis, Univ. of California, Berkeley, May 1975.

(23] V. Pan and J. Reif. Efficient Parallel Solution of Linear Systems. Technical
Report TR-02-85, MIT, 1985.

[24] V. Pan and J. Reif. Eztension of the Parallel Nested Dissection Algorithm to
the Path Algebra Problems. Technical Report TR-15-85, MIT, 1985.

[25] S. Parter. The Use of Linear Graphs in Gaussian Elimination. SIAM Review,
3(2):119-130, 1961.

[26] D. J. Rose. A Graph-Theoretic Study of the Numerical Solution of Sparse
Positive Definite Systems of Linear Equations. In R. C. Read, editor, Graph
Theory and Computing, pages 184-218, Academic Press, 11 Fifth Ave, New
York, NY 10003, 1972.

[27] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimination on
Directed Graphs. sicomp, 34(1):176-197, January 1978.

[28] C. E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.
of the AIEE, 57:713-723, 1938.

[29] R. E. Tarjan. Fast Algorithms for Solving Path Problems. J. ACM, 28(3):595-
614, July 1981.

[30] J. Valdes, R. E. Tarjan, and E. L. Lawler. The Recognition of Series Parallel
Digraphs. 11th Annual ACM Symposium on Theory of Computing, 6:1-12,
May 1979.

[31] J. A. Valdes. Parsing Flowcharts and Series-Parallel Graphs. PhD thesis,
Stanford University, 1978.

[32) M. Yannakakis. Computing the Minimum Fill-in is NP-Complete. SIAM J.
Alg. Disc. Meth., 2:77-79, 1981.




ML AR RS R U A UYL LIt S 1) g tap dop op g ‘Rap b p ¢ (AN ¥ - “an'e D 5008 d op S’ D P " T

=N D
FILMED

MAReH, |9 §&
- T1¢_

LY

“Y_v_ "‘

)

:

\

)

'

UM% T T, BT Tt At R O T S L L T i i e T T e I T T i T I T R I o O I R o I N N L. L
T YL O, e N SR SN A A A S T AR G A S vyt ALY "'-. ot



